

This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 826106.

D3.6

Specification of data encryption mechanisms for

mobile and web applications - V2

ABSTRACT

This deliverable provides the second and final version of the specification of protocols for encryption

mechanisms for both health data storage and health data exchange. This document also provides a detailed

technical background for encryption mechanisms, which is a necessary step to move forward for both data

in-transit and data at rest. The deliverable includes the encryption aspects of all the involved architectural

components (e.g., S-EHR App, HCP Web App, S-EHR Cloud, and Reference Research Center), protocols (e.g.,

D2D, R2D Access, R2D Backup, R2D Emergency, RDS), and scenarios (e.g. Medical Visit, Emergency and

Research) for data at rest and in-transit.

Delivery Date August 9th 2021

Work Package WP3

Task T3.5

Dissemination Level Public

Type of Deliverable Report

Lead partner UBIT

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

i

This document has been produced in the context of the InteropEHRate Project which has received

funding from the European Union’s Horizon 2020 research and innovation programme under

grant agreement No 826106. All information provided in this document is provided "as is" and no

guarantee or warranty is given that the information is fit for any particular purpose.

This work by Parties of the InteropEHRate Consortium is licensed
under a Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/).

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

ii

CONTRIBUTORS

 Name Partner

Contributors Sofianna Menesidou, Entso Veliou, Menelaso

Giannopoulos, Thanassis Giannetsos

UBIT

Reviewers Paolo Marcheschi FTGM

 Christina Kotsiopoulou HYGEIA

LOGTABLE

Version Date Change Author Partner

0.1 12-05-21 ToC and cleaning from the v1 Sofianna Menesidou UBIT

0.2 17-05-21 Section 3 restructuring Sofianna Menesidou UBIT

0.3 18-05-21 Section 3 Sofianna Menesidou UBIT

0.4 25-05-21 Section 3 Sofianna Menesidou UBIT

0.5 27-05-21 Section 3 Sofianna Menesidou UBIT

0.6 28-05-21 Section 3 Sofianna Menesidou UBIT

0.7 31-05-21 Section 3 Sofianna Menesidou UBIT

0.8 14-06-21 Section 3 Sofianna Menesidou UBIT

0.9 15-06-21 Section 3 Sofianna Menesidou,

Menelaos Giannopoulos

UBIT

1.0 23-06-21 Appendix Sofianna Menesidou UBIT

1.1 06-07-21 Quality check Argyro Mavrogiorgou UPRC

1.2 03-08-21 Section 3 updates based on

comments

Sofianna Menesidou UBIT

VFInal 06-08-2021 Final technical check and
version for submission

Francesco Torelli
Laura Pucci

ENG

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

iii

ACRONYMS

Acronym Term and definition

ABAC Attribute Based Access Control

ABE Attribute-based encryption

AES Advanced Encryption Standard

BIOS Basic Input/Output System

BLE Bluetooth Low Energy

CA Certificate Authority

CAI Certificate Authority Interface

CP-ABE Ciphertext policy Attribute-based encryption

CRL Certificate Revocation List

CRUD create, read, update and delete

CSR Certificate Signing Request

DES Data Encryption Standard

DH Diffie-Hellman

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

EMR Electronic Medical Records

FDE Full Disk Encryption

HTTPS Hypertext Transfer Protocol Secure

IBE Identity-based Encryption

IdP Identity Provider

IaaS Infrastructure-as-a-Service

KP-ABE Key policy Attribute-based encryption

PKG Private Key Generator

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

iv

PKI Public Key Infrastructure

RBAC Role Based Access Control

RRC Reference Research Center

RSA Rivest – Shamir – Adleman

SAML Security Assertion Markup Language

SEV Secure Encrypted Virtualisation

SGX Software Guard Extension

SoC System on Chip

SQL Structured Query Language

SSL Secure Socket Layer

TDE Transparent Data Encryption

TPM Trusted Platform Module

TEE Trusted Execution Environment

TLS Transport Layer Security

TTP Trusted Third Party

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

v

TABLE OF CONTENT

1 INTRODUCTION ... 1

1.1 Scope of the document ... 1

1.2 Intended audience ... 1

1.3 Structure of the document .. 2

1.4 Updates with respect to previous version (if any) .. 2

2 TECHNICAL BACKGROUND .. 3

2.1 Cryptography ... 3

2.2 Encryption for Data in Transit ... 4

2.2.1 Data exchange over Bluetooth .. 4

2.2.2 Data exchange over the Internet ... 4

2.3 Encryption for Data in Storage .. 5

2.3.1 Mobile Data Storage .. 5

2.3.2 Desktop Data Storage .. 6

2.3.3 Cloud Data Storage and Break-glass Encryption ... 6

2.3.3.1 Confidential Computing ... 8

2.4 InteropEHRate Technologies ... 9

3 INTEROPEHRATE SPECIFICATION OF ENCRYPTION MECHANISMS .. 11

3.1 D2D Security Architecture and Models ... 12

3.2 D2D Security APIs .. 14

3.2.1 S-EHR App Security APIs .. 14

3.2.2 HCP App Security APIs ... 14

3.3 R2D Access Security Architecture and Models .. 15

3.4 R2D Backup Security Architecture and Models ... 18

3.5 R2D Backup Security APIs .. 20

3.5.1 S-EHR Cloud Security APIs ... 20

3.6 R2D Emergency Architecture and Models .. 21

3.7 R2D Emergency Security APIs .. 23

3.7.1 S-EHR Cloud Security APIs ... 23

3.8 RDS Security Architecture and Models .. 25

3.9 RDS Security APIs ... 27

3.9.1 RRC Security APIs ... 27

3.10 Security Commons Architecture and Models .. 28

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

vi

3.11 Security Commons APIs ... 30

4 CONCLUSIONS ... 32

5 APPENDIX A ... 39

LIST OF FIGURES

Figure 1 – InteropEHRate protocols

Figure 2 – D2D crypto-model

Figure 3 – D2D sequence diagram

Figure 4 – R2D Access crypto-model

Figure 5 – TLS handshake protocol

Figure 6 – R2D Backup crypto-model

Figure 7 – R2D Backup sequence diagram

Figure 8 – R2D Emergency crypto-model

Figure 9 – R2D Emergency sequence diagram

Figure 10 – RDS crypto-model

Figure 11 – RDS sequence diagram

Figure 12 – Security commons crypto-model

Figure 13 – Security commons sequence diagram

LIST OF TABLES

Table 1 - Comparison of TEEs [Pires2019]

Table 2 - InteropEHRate technologies

Table 3 - Notation used

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

1

 INTRODUCTION 1
According to OWASP, two out of the top ten mobile risks are a) insecure communications and b) insecure

data storage [owasp2020]. On one hand, insecure data transmission to and from a mobile app generally

takes place through a telecom carrier and/or over the internet. Hackers intercept data either by interfering

with the local area network of users through a compromised Wi-Fi network, by tapping into the network

through routers, cellular towers, proxy servers, or by exploiting an infected app through malware. Insecure

data storage is an easy way in which an adversary can access data in a mobile device. On the other hand, an

adversary can either gain physical access to a stolen device or enter into it using malware or a repackaged

app.

Encryption is the main technique to mitigate both insecure communications and data storage. Healthcare

data encryption has become a popular option for protecting sensitive medical information. The need for

encryption has become more prevalent with the rapid increase in the number of practices using Electronic

medical records (EMRs) and mobile devices. Encryption is a means to protect patient health information

when it is transmitted from one user to another.

In addition, the healthcare industry can benefit from cloud technology to facilitate communication,

collaboration, and coordination among different healthcare providers. However, to ensure the patients’

control over access to their own health data, it is necessary to encrypt the data before they are transferred

and stored in the cloud. In fact, outsourcing to the cloud brings several security risks.

Due to the high value of sensitive health data, third-party storage servers are often the targets of various

malicious behaviours which may lead to exposure of the data. That was the case of the famous incident of

the stored data in the Department of Veterans Affairs database containing sensitive PHI of 26.5 million

military veterans, including their social security numbers and health problems that was stolen by an

employee who took the data home without authorization [La2006].

Last but not least, in emergency situations, it is crucial, for sensitive encrypted data, to be able to be

decrypted when a specific access control policy on who can decrypt the data applies [Bethencourt2007].

 Scope of the document 1.1
The main goal of the present document is to describe the InteropEHRate specification of protocols for

encryption mechanics for both a) health data storage on mobile devices, HCP App and cloud services and b)

health data exchange. Moreover, the deliverable describes the research conducted regarding encryption

mechanisms. In a nutshell, for data encryption in-transit, we propose apart from having enabled the

encryption mechanisms that are supported by Bluetooth and HTTPS over the Internet, an application level

encryption for encrypted communication. In the same manner, for data encryption in storage apart from

full disk encryption based on TEE mechanisms, we propose an application level encryption for encrypted

storage. To this end, a detailed symmetric encryption/decryption specification concerning all the

InteropEHRate protocols will be provided.

 Intended audience 1.2
The document is mainly intended for developers, architects, manufacturers, security engineers, and all the

project participants and partners interested to have an overview of how the InteropEHRate supports

encryption/decryption mechanisms for data storage and data exchange.

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

2

 Structure of the document 1.3
This deliverable is structured as follows:

● Section 1 (the current section) introduces the overall concept of the document, defining its scope,

intended audience, and relation to the other project tasks and reports.

● Section 2 describes and reviews the research background regarding encryption mechanisms for

both data storage and data exchange including aspects regarding confidential computing.

● Section 3 introduces the overall encryption/decryption mechanisms in terms of InteropEHRate,

where it is analysed in detail for both data storage and data exchange for all the InteropEHRate

protocols. This section includes the security models for all the security protocols to highlight the

used crypto-primitives.

● Section 4 concludes the deliverable and highlights the most important aspects of the

encryption/decryption algorithms used.

● Appendix A summarises all the cryptographic notations used for a better understanding of the

modelling of protocols and the JSON schemas for D2D requests.

 Updates with respect to previous version (if any) 1.4
Several updates have been made with respect to the previous version. The most important are:

● Background extended with the PKI and the concept of hierarchy of trust among CAs for cross-

border trust establishment.

● A summary and table with all the technologies adopted in InteropEHRate is also included as a sub-

section.

● Description of all the security models and crypto-primitives regarding data encryption mechanisms

per protocol is included and described in the deliverable.

● The structure of Chapter 3 is completely restructured based on the InteropEHRate protocols for a

clearer presentation. In addition, all the security protocols are analyzed in comparison with the

previous version of the deliverable.

● Specification has been updated with the inclusion of Diffie-Hellman (DH) key agreement APIs, the

inclusion of RDS protocol and a clear distinction between the R2D-based protocols namely R2D

Access, R2D Backup and R2D Emergency.

● Specification was updated by removing the CP-ABE application level encryption for the R2D

Emergency protocol for simplicity.

● Conclusion section was updated, while no next steps have been included since this is the final

version of the deliverable.

● An appendix with all the cryptographic notations of the security models included in the deliverable

and the JSON schemas for D2D requests.

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

3

 TECHNICAL BACKGROUND 2
This chapter includes the necessary background and terminology for the encryption mechanisms, starting

from the cryptography basics, the state-of-the-art solutions for both data storage and data exchange and a

detailed literature review on the challenging aspect of cloud data storage. In addition, the concept of

confidential computing is also highlighted, while the most known commercial TEE technologies are

compared.

 Cryptography 2.1
Cryptography is one of the most used techniques to build security and is an indispensable tool for

protecting information in computer systems [Ghulam2018]. Cryptography is used to store and transfer data

in such a form that only the sender and the receiver can understand or process it. In addition, cryptography

depends upon both the algorithm and the key. There are two main types of Cryptography: Symmetric key

cryptography and Asymmetric cryptography.

Symmetric Key Cryptography: In symmetric key cryptography, a shared secret key is used between the

sender and recipient in order to encrypt and decrypt the data. There are many algorithms that are based on

symmetric key cryptography, like Caesar cipher, Block cipher, Stream cipher, DES (Data Encryption

Standard), and AES (Advanced Encryption Standard). The main disadvantage of using symmetric key

cryptography is the need to exchange the secret key between the sender and the receiver in a secure

manner. In addition, symmetric algorithms such as the AES demand only a small amount of computational

power [Lisonek2008].

Asymmetric Key Cryptography: In asymmetric key cryptography, also called public key cryptography, two

different keys are used for encryption and decryption. These two keys are known as a public key and

private key, where one the former is used for encryption and the latter is used for decryption. The private

key is a secret key, private key never exposed. There are many algorithms that are based on asymmetric

key cryptography, like Diffie-Hellman, RSA (Rivest - Shamir - Adleman) and Elliptic Curve Cryptography

(ECC). This method of encrypting data eliminates the need for the existence of a unique shared key

between the communicating partners, but requires more computational power to perform manipulations

on the data in comparison to symmetric cryptographic techniques [Lisonek2008].

Identity-based encryption: The identity-based encryption is a type of asymmetric key encryption in which a

user's public key is a string (can be a user's identity or mail address) combined with a public master key.

User obtains his private key from the Private Key Generator (PKG) [BF03].

Attribute-based encryption: Attribute-based encryption (ABE) is a recent promising cryptographic method

proposed by Sahai and Waters in 2005 [SW05]. The ABE technique extends identity-based encryption (IBE)

to enable expressive access policies and fine-grained access to encrypted data. In both schemes IBE and

ABE, cryptographic keys are managed by a Trusted Third Party (TTP), usually called Attribute Authority (AA).

In ABE, data is encrypted along with an access structure which is the logical expression of the access policy.

The encrypted data can be decrypted by any user if his secret key has attributes that satisfy the access

policy. The power of ABE is that we do not need to rely on the storage server to avoid unauthorized data

access since the access policy is embedded in the ciphertext itself [Lounis2014]. The two main variants of

ABE are the Key-Policy Attribute-Based Encryption (KP-ABE) [GPSW06] and the Ciphertext Policy Attribute-

Based Encryption (CP-ABE) [BSW07].

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

4

Public Key Infrastructure (PKI) is the set of hardware, software, policies, processes, and procedures

required to create, manage, distribute, use, store, and revoke digital certificates and public-keys [PKI]. The

foundation for Public Key Infrastructure (PKI) is public key cryptography. The PKI is required to deliver the

public keys to existing systems or users securely. The public key is exchanged digitally in the form of digital

certificates having a certain period of validity. The most known standard defining the format of a certificate

is the X.509, while the entity that issues a digital certificate is the Certificate Authority (CA). In the

literature, five PKI trust models are mainly used: the hierarchical trust model, the mesh trust model, the

bridge CA trust model, the hybrid trust model, and the trust list trust model [Uahhabi2014]. More

information regarding each PKI trust model can be found in [Uahhabi2014].

 Encryption for Data in Transit 2.2
Security is one of the main challenges when it comes to eHealth services and is a crucial requirement for

the transmission of required health data across the network. Data in transit is vulnerable to interception

and potentially redirection attacks. InteropEHRate deals with five protocols namely D2D, R2D Access, R2D

Backup, R2D Emergency and RDS. D2D is over Bluetooth without Internet usage, while R2D Access, R2D

Backup, R2D Emergency and RDS are over the Internet. This section will provide a brief overview of the

encryption mechanisms used. In the context of InteropEHRate it’s assumed that common best practices,

such as HTTPS (Hypertext Transfer Protocol Secure), are enabled, but will also be provided as an extra

security layer at the application level encryption.

2.2.1 Data exchange over Bluetooth

Bluetooth devices are used to exchange encrypted data over an encrypted link with the use of a “link key”.

The creation of that key depends on the pairing methods [Lecroy]. These pairing methods help the users to

decide whether they exchange no key at all, or if they want to use a 6-digit (randomly or not) generated

passcode which is used to authenticate the users [Loveless2018] [Ravikiran]. In addition, if the devices

have enabled out-of-band communication channels, then all the needed information and the key will be

exchanged out of the Bluetooth band. If two devices want to share information, for instance a file, then

they have to (i) first, exchange device information to establish a secure connection and (ii) through the use

of the common key, which they agreed to, encrypt the connection. After the establishment of the secure

channel, they can securely exchange their data [bon2016] [Ravikiran].

Prior to Bluetooth version 2.1, pairing was not secure at all [Lecroy]. A passive eavesdropper was able to

crack the user’s PIN and then compute the traffic key. Since Bluetooth v2.1 Secure Simple Pairing is used,

which uses Elliptic Curve Diffie-Hellman (ECDH) for establishment of the session keys. In this way, a passive

eavesdropper is prevented from obtaining the traffic keys. Version 4.0 established Bluetooth Low Energy

(BLE), which approached the traffic encryption using the AES algorithm. But even though the encryption is

better, the lack of use of ECDH made the encryption keys vulnerable to passive eavesdroppers

[Corella2015]. In the context of InteropEHRate, the latest AES encryption for Bluetooth will be used, apart

from the application level encryption.

2.2.2 Data exchange over the Internet

Traditionally, a secure socket layer (SSL) is used to establish secure communications. However, the IETF

deprecated SSL in 2015, with Transport Layer Security (TLS) 1.0 supplanting SSL 3.1, but the ‘SSL’ tag has

stuck, often representing both standards. A website that has implemented these cryptographic protocols is

marked Secure HTTPS (HTTP within SSL/TLS), which should be table stakes for any mobile app.

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

5

HTTPS is an extension of the Hypertext Transfer Protocol and the letter “S” is referred to as Security. HTTPS

is used to establish secure communication over a computer network [Sullivan2018]. Clients and servers can

communicate the same way as they did by using HTTP, but in this case, they communicate over a secure

SSL or TLS connection, which encrypts and decrypts the messages that both client and server exchange. As

HTTPS is the secure version of HTTP, it adds encryption in HTTP in order to increase the security of the data

being transferred. In practice, this provides an assurance that no one can possibly alter the communications

between two parties [Kothari2019].

Transport Layer Security (TLS) is a widely used security protocol, which protects the data that is transmitted

online, between a web browser and a website through HTTPS. TLS also provides confidentiality and data

integrity through encryption and it ensures that the other party in a connection is who he says that he is

[Lake2019]. By using both symmetric and asymmetric encryption a secure connection is established and so

the data are transmitted between client and server. The client and the server should agree to the

algorithms that they will use for both symmetric and asymmetric encryption. Negotiation for the

agreement on the utilised algorithms is handled internally by the protocol. The most frequent algorithm for

symmetric encryption is the Advanced Encryption Standard (AES) and for asymmetric encryption is Diffie-

Hellman [Prodromou2019].

 Encryption for Data in Storage 2.3
An end user device is a personal computer (desktop or laptop), a consumer device (e.g., personal digital

assistant, smart phone), or a removable storage media (e.g., USB flash drive, memory card, external hard

drive, writable CD or DVD) that can store information. Storage security is the process of allowing only

authorized parties to access and use stored information [nist800-111]. Data at rest is extremely vulnerable,

and thus, in the context of InteropEHRate we will focus on mobile, desktop and cloud data storage since

they are the main involved devices in the InteropEHRate architecture. According to [nist800-111] the

common types of storage encryption are:

● Full Disk Encryption (FDE) - For a computer that is not booted, all the information encrypted by FDE

is protected, assuming that pre-boot authentication is required. When the device is booted, then

FDE provides no protection; once the OS is loaded, the OS becomes fully responsible for protecting

the unencrypted information. FDE can be achieved with a Trusted Platform Module (TPM).

● Virtual Disk and Volume Encryption - When virtual disk encryption is employed, the contents of

containers are protected until the user is authenticated. If single sign-on is being used for

authentication to the solution, this usually means that the containers are protected until the user

logs onto the device. If single sign-on is not being used, then protection is typically provided until

the user explicitly authenticates to a container.

● File/Folder Encryption - File/folder encryption protects the contents of encrypted files (including

files in encrypted folders) until the user is authenticated for the files or folders. If single sign-on is

being used, this usually means that the files are only protected until the user logs onto the device.

If single sign-on is not being used, then protection is typically provided until the user explicitly

authenticates to a file or folder.

2.3.1 Mobile Data Storage

This section describes the storage encryption techniques that are used in both known mobile devices

Android and iOS. In order to provide confidentiality, medical data must be encrypted before it is stored on

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

6

the mobile phone or any other device. As aforementioned, symmetric encryption enables the data to be

securely stored in an efficient manner.

● Android Data Storage - Android supports two major categories for storage encryption: full-disk

encryption (FDE) and file-based encryption (FBE). In Android versions 5.0 up to 9.0 FDE is supported

and is enabled by default with the use of Advanced Encryption Standard (AES) algorithm

[androidd2020]. For Android version 7.0 or later, FBE is supported too. FBE has the ability to

encrypt different files with different keys and hence each file can be decrypted independently

[androidf2020]. FBE keys, which are 512-bit keys, are stored encrypted by another key (a 256-bit

AES-GCM key) held in the Trusted Execution Environment (TEE) [androidf2020].

● iOS Data Storage - Apple automates by default the FBE encryption process of an iPhone from

version 8 and above [kaspersky] with a 256-bit AES encryption [applesec]. The data stored on the

phone is automatically encrypted through a unique identifier built into the device’s hardware. In

addition, all personal data are encrypted by default whenever the phone is locked, and it is

necessary for the user to have a passcode or Touch ID enabled (i.e. their fingerprint) in order to

prevent unauthorized access to data [nield2020] [appledev].

2.3.2 Desktop Data Storage

This section describes the storage encryption techniques that are used for both database and disk storage.

The first subsection describes the technologies that are used for the encryption of data in databases, both

Structured Query Language (SQL) and NoSQL, since both HCP Apps and Cloud services use databases to

store their data, and the second describes disk encryption techniques. In the context of InteropEHRate, we

assume that common best practices, such as full disk encryption are enabled, but we will also provide

application level encryption.

● Database Encryption - Structured Query Language (SQL) supports Transparent Data Encryption

(TDE). TDE encrypts both the data and log files [microsoftder2019]. The encryption process is using

either AES or Triple DES algorithm [microsofttde2019]. The process of encryption and decryption

are real time and they are completely transparent to the applications that have access to these

databases [microsoftder2019]. NoSQL databases, and specifically MongoDB, support data-in-

motion encryption and the data-at-rest encryption [Townsend]. For data-in-motion encryption,

both Transport Layer Security (TLS) and Secure Socket Layer (SSL) protocols are supported. For

data-at-rest encryption, an AES 256-bit symmetric key encryption at the file level is used.

● Full-Disk Encryption - FDE is encryption at the hardware level, where the data is automatically

written in encrypted form. When it is read, it is automatically decrypted. However, such an

approach has the disadvantage of additional time overhead for accessing data.

2.3.3 Cloud Data Storage and Break-glass Encryption

Three types of cryptography are commonly used to secure EHRs: a) symmetric key cryptography, b) public

key cryptography, and c) attribute-based encryption [Madnani2013]. “Break-glass” is a term used in IT

healthcare systems in order to denote an emergency access to private information without having the

credentials to do so [Scafuro2019]. Several works in the literature deal with the concept of break-glass

encryption for cloud storage [Scafuro2019] [Oliveira2020]. Cloud services emerge as a promising solution

to this problem by allowing ubiquitous access to information. However, Electronic Medical Records (EMR)

storage and sharing through clouds raise several concerns about security and privacy.

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

7

Several studies propose to send the EMR to a cloud service provider, where it is stored and encrypted with

an encryption key known by the cloud provider [Abbas2014]. However, this approach does not protect the

medical data against internal attacks [Abbas2014]. The storage of sensitive data over the cloud requires

cryptography techniques in order to keep data confidential and preserve patients' privacy. Moreover,

various solutions, based on symmetric or public cryptography, have been proposed to provide

cryptographic access controls that allow storage and sharing of data on untrusted servers [KRS+03]

[GSMB03] [BCHL09] [dVFJ+07] [WLOB09]. However, these techniques do not support fine grained access

control required by medical applications and are not scalable with the number of users and introduce high

complexity in key distribution and management.

The work in [Li2010] proposes a unique authority to authenticate the medical staff to access the data.

Other research works suggest encrypting the EMR with a secret key before storing it in the cloud

[Zhang2010] [Mashima2012]. However, this means that the secret key needs to be pre-shared with all the

legitimate users that need to access the EMR throughout the treatment, while in case of revoking the

treatment process, the EMR must be re-encrypted with a new key and re-distributed to the legitimate users

making the whole process not efficient [Oliveira2020]. Moreover, several works attempt to address access

control of encrypted data by using secret sharing schemes combined with identity-based encryption

[Benaloh1988] [Brickell1989]. However, such schemes do not address resistance to collusion attacks. A

break-glass solution based on a password-based encryption and a master secret key-based encryption

proposed in [Zhang2016]. The work in [Scafuro2019] proposed a solution where the security of the

ciphertexts stored on a cloud can be violated exactly once, in a way that is detectable and without relying

on a trusted third party, in case of secret keys lost.

Another approach is to use attribute-based encryption (ABE) techniques to control access to patients’ data.

In [6] [Brucker2010], the authors present an ABE-based break-glass access control. However, their solution

does not enable revoking access after it is granted [Oliveira2020]. The authors in [Li2013] propose a

patient-centric framework and a suite of mechanisms for data access control to PHRs stored in semi-trusted

servers based on attribute-based encryption (ABE) techniques to encrypt each patient’s PHR file. Their work

also enables dynamic modification of access policies or file attributes, supports efficient on-demand

user/attribute revocation and break-glass access under emergency scenarios.

Several works leverage techniques, such as Role Based Access Control (RBAC) and Attribute Based

Encryption (ABE), to provide fine-grained access control required by personal medical systems. In research

work [IAP09], applied Ciphertext Policy ABE (CP-ABE) is used to enable patients to securely store and share

their health record on external third-party servers. In [LYRL10], authors proposed a novel practical

framework for fine-grained data access control to medical data in Cloud. To avoid high key management

complexity and overhead, they organized the system into multiple security domains where each domain

manages a subset of users [Lounis2014]. The work in [Yang2019] presents a self-adaptive access control

scheme for healthcare by combining attribute-based encryption (ABE) and a password-based break-glass

key, which is pre-set by the patient. A contact holds this key for emergency situations when break-glass

access has to be activated. More recently, the work in [Oliveira2020] proposes the usage of the ciphertext-

policy ABE (CP-ABE) associated with policies defined for emergency situations, based on the research

[Bethencourt2007], as well as the usage of an authentication token to grant and revoke access dynamically

without the need to re-encrypt the patient EMR. In the context of InteropEHRate, we will combine

symmetric key encryption for medical data and CP-ABE for symmetric key encryption.

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

8

 Confidential Computing 2.3.3.1

Public cloud systems are the de facto platform of choice to deploy online services. As a matter of fact, all

the major IT players provide some form of “infrastructure-as-a-service” (IaaS) commercial offerings,

including Microsoft, Google and Amazon [Göttel2019]. IaaS infrastructures allow customers to reserve and

use (virtual) resources to deploy their own services and data. These resources are eventually allocated in

the form of virtual machines, containers or bare metal instances over the cloud provider’s hardware

infrastructure [Göttel2019]. However, privacy concerns have greatly limited the deployment of systems

over public clouds. The recent introduction of new hardware-assisted memory protection mechanisms

inside x86 processors paves the way to overcome the limitations [Göttel2019].

Confidential computing refers to performing computations with additional data confidentiality and integrity

guarantees. TEEs have recently emerged as one of the most flexible and mature technologies, which can

enable confidential computing. Many of today’s leading technology companies are actively developing and

promoting confidential computing technologies [CCC2020]. Different TEE implementations vary in terms of

features. The two most well-known TEE technologies are Intel SGX and AMD SEV.

● The Intel Software Guard Extension (SGX) [Pires2019] is primarily conceived for shielding micro-

services, so that the trusted code base would be minimised. Automatic memory encryption and

integrity protection are performed by hardware over a reserved memory area fixed at booting

time, defined in the basic input/output system (BIOS) and limited to 128MiB (usable 93.5MiB).

Whatever is kept in this area is automatically encrypted and integrity checked by hardware. The

trust boundary is the CPU package, which holds hardware keys upon which attestation and sealing

services are built. Applications are partitioned into trusted and untrusted parts, while the OS is

considered untrusted.

● AMD secure encrypted virtualisation (SEV) [Pires2019] provides automatic inline encryption and

decryption of memory traffic, granting confidentiality for data in use by virtual machines.

Cryptographic operations are performed by hardware and are transparent to applications, which

do not need to be modified. Keys are generated at boot time and secured in a coprocessor

integrated into the System on Chip (SoC). It was conceived for cloud scenarios, where guest VMs

might not trust the hypervisor. Apart from including the whole guest OS in the trusted code base, it

does not provide memory integrity and freshness guarantees as Intel SGX.

In general, Intel SGX focuses on micro services, while AMD SEV is designed for cloud. AMD SEV offers better

performance for intensive workloads and is transparent to the software running in an SEV-enabled VM.

Both Microsoft and Amazon offer confidential computing based on Intel SGX, while Google very recently

announced such a feature based on the AMD SEV [Google2020]. Table 1 below summarizes these two

known TEE technologies used for confidential computing [Pires2019].

Commercial TEE Technologies Intel SGX AMD SEV

Public Cloud provider
announcements

Microsoft Azure Confidential
Computing (2018) & Amazon AWS

Nitro Enclaves (2019)

Google Confidential Virtual Machines
(2020)

Released 2015 2016

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

9

Target devices Client PCs Servers

Running mode User-level Hypervisor

Executes arbitrary code Yes yes

Secret hardware key Yes yes

Attestation and Sealing Yes yes

Memory encryption Yes yes

Memory integrity Yes no

Resilient to wiretap Yes yes

I/O from TEE No no

TEE usable memory limit 93.5MiB system RAM

Trusted Computing Base Trusted app partition Entire VMs

Table 1 - Comparison of TEEs [Pires2019]

 InteropEHRate Technologies 2.4
This section is in alignment with [D3.1] summarises the technologies used for encryption for both data at

rest and data in transit. As already referred to [D3.1] Data-at-rest SHOULD be symmetrically encrypted

using a military-grade NIST-compliant algorithm (e.g. AES with 256bit key) and the symmetric Key SHOULD

be stored and retrieved by a local Keystore. In addition, encryption in transit SHALL be used with both

secure-key-exchange (e.g. Diffie-Hellman key exchange) and strong network-level encryption. Table 2 below

summarises the aforementioned used security enablers.

 Data in Storage Data in Transit

D2D S-EHR App:
Symmetric Encryption / Database

Encryption

Diffie-Hellman Key Agreement /
Symmetric Encryption

R2DAccess S-EHR App:
Symmetric Encryption / Database

Encryption

TLSv1.21

1
 https://datatracker.ietf.org/doc/html/rfc5246

https://datatracker.ietf.org/doc/html/rfc5246

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

10

R2D Backup S-EHR Cloud:
Symmetric Encryption / File/Folder

Encryption

Symmetric Encryption

R2D Emergency S-EHR Cloud:
Symmetric Encryption / File/Folder

Encryption

Symmetric Encryption

RDS S-EHR App:
Symmetric Encryption / Database

Encryption

Diffie-Hellman Key Agreement /
Symmetric Encryption

Table 2 - InteropEHRate technologies

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

11

 INTEROPEHRATE SPECIFICATION OF ENCRYPTION MECHANISMS 3
The purpose of this section is to show how the InteropEHRate project will handle encryption/decryption

mechanisms for data storage and data exchange in the context of InteropEHRate protocols and use cases.

The following subsections include crypto models for data encryption mechanisms for all communication

channels and involved applications. An overview of how the different actors and organizations involved in

the InteropEHRate architecture in [D2.6] interact with each other in the context of the encryption

mechanisms depicted in Figure 1. More specifically, in the context of interoperate data data-at-rest should

be symmetrically encrypted using a military-grade NIST-compliant algorithm (e.g. AES with 256bit key),

while the symmetric-encryption key (that is used for data-at-rest) should be stored and retrieved by a local

KeyStore (password-protected or biometric protected). In addition, apart from application-level encryption,

transport-level encryption shall be used such as TLS v1.2 which incorporates both secure-key-exchange and

strong network-level encryption (e.g. Diffie-Hellman key exchange and RSA-based encryption).

InteropEHRate architecture involves the following communication protocols: the device-to-device (D2D),

the remote-to-device Access (R2D Access), the remote-to-research Access (R2R-Access) which is similar to

R2D Access as an optional extension of the RDS protocol, the remote-to-device Backup (R2D Backup), the

remote-to-device Emergency (R2D Emergency) and the research data sharing (RDS). In the context of R2D

Access, R2D Backup, R2D Emergency, R2R Access and RDS Research, TLS 1.2 should be enabled for

encrypted communication. In the context of D2D, the AES Bluetooth encryption should be enabled. In

addition, application level symmetric encryption will be used in cases where the TLS 1.2 and Bluetooth

encryption are missing or not enabled. This deliverable will focus on application level encryption

specifications. The following sections describe the specified APIs for the data encryption mechanisms. In

addition, from the Figure 1 below, we can have an overview all the different communication channels and

the involved applications where sensitive medical data are transferred and stored.

Figure 1 – InteropEHRate protocols

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

12

 D2D Security Architecture and Models 3.1
The D2D protocol defines the set of operations that allow the exchange of health data between a S-EHR

app and an HCP app in short-range distance over Bluetooth, without the usage of Internet connection

[D4.3]. This section describes the security models in the context of D2D. Prior to any security operation, the

bootstrap phase will take place in order for all the participants in the protocol to agree on the necessary

elements and acquire the needed Certificates as the necessary step to all the Public Key Infrastructure (PKI)

frameworks. This prerequisite phase applies to all scenarios if certificates are missing and an Internet

connection is necessary. These steps will be described in the current section and will not be described again

in the rest of the scenarios since they are the same. In addition, section 3.11 below summarises all the

security common APIs including the interaction with the CA in order to retrieve the necessary certificates,

certificate chain and validate a certificate.

Even though the interfaces are not depicted in the security models we refer to them for easier reference on

the architecture of the reader. The name of the interface that is offered to the HCP app regarding the D2D

protocol is named D2D. This interface contains the operations for letting the HCP app to perform tasks

related to the S-EHR app, by invoking these operations, while the D2DServerSecurity and the

D2DClientSecurity interfaces contain the operations for letting the HCP app and the S-EHR app establish a

secure Bluetooth Connection [D2.6]. Both APIs will be used by the S-EHR and HCP app to agree on a shared

secret key for the encrypted communication. The reader can also refer to Figure 13 of [D4.3].

In the D2D protocol, we have two principals, the 𝑆 − 𝐸𝐻𝑅 𝐴𝑝𝑝 and the 𝐻𝐶𝑃 𝐴𝑝𝑝, that agree publicly on an

element 𝑔 that generates a multiplicative group 𝐺. The group 𝐺 is a subgroup of𝑍𝑝
∗ of prime order 𝑞, 𝑝 is a

large prime and 𝑔is a generator of the group 𝑍𝑝
∗ of order 𝑚. Typical sizes in use today are 1024 bits for the

length of 𝑝 and 160 bits for the length of 𝑞. The two principals select random values, 𝑟𝐴 and 𝑟𝐵 respectively,

in the range between 1 and the order of 𝐺. 𝑆 − 𝐸𝐻𝑅 𝐴𝑝𝑝 calculates 𝑡𝐴 = 𝑔𝑟𝐴and 𝐻𝐶𝑃 𝐴𝑝𝑝 calculates

𝑡𝐵 = 𝑔𝑟𝐵 and they exchange these values (public keys) as included in the corresponding Certificates. In

order to generate the Certificates, both parties share their public keys to the CA, in order to issue the

Certificates (i.e. 𝐶𝐴, 𝐶𝐵). Each issued Certificate (in our case the X.509) contains information regarding the

identity of each party, the corresponding public keys 𝑡 , while it is digitally signed by the CA’s Certificate

(i.e.𝐶𝐶𝐴). Each party can verify the Certificate signature (when it is necessary) with the root CA’s Certificate.

In this deliverable, we omit the steps of the identity and consent management that happen before the

encryption mechanisms, since they are part of other specification deliverables ([D3.4] and [D3.8]), and we

will focus only on the encryption/decryption aspects.

The encryption (i.e. 𝐸𝑛𝑐 function) in the communication channel is performed with the symmetric key

𝑍𝐴𝐵 . Each party can calculate the symmetric key with the private values, 𝑟𝐴 and 𝑟𝐵and the public values, 𝑡𝐵

and 𝑡𝐴. It has to be noted here that 𝑡𝐵 is already contained in the Certificate of 𝐻𝐶𝑃 𝐴𝑝𝑝 and hence the

𝑆 − 𝐸𝐻𝑅 𝐴𝑝𝑝 has access and 𝑡𝐴is already contained in the Certificate of 𝑆 − 𝐸𝐻𝑅 𝐴𝑝𝑝 and hence

𝐻𝐶𝑃 𝐴𝑝𝑝has access. More specifically, 𝑆 − 𝐸𝐻𝑅 𝐴𝑝𝑝 calculates 𝑍𝐴𝐵 = 𝑡𝐵
𝑟𝐴 and 𝐻𝐶𝑃 𝐴𝑝𝑝 calculates

𝑍𝐴𝐵 = 𝑡𝐴
𝑟𝐵 .This is the last step of the well known Diffie Hellman key agreement protocol. For storage each

party encrypts/decrypts (i.e. 𝐸𝑛𝑐 and 𝐷𝑒𝑐 functions) the stored data with a newly generated symmetric key

𝑍 𝐴and 𝑍 𝐵respectively from a Key Derivation Function (KDF) for a high-entropy key. In other words, the

shared secret for encrypted communication is 𝑍𝐴𝐵 = 𝑔𝑟𝐴𝑟𝐵 . This value can be calculated as described

earlier by both 𝑆 − 𝐸𝐻𝑅 𝐴𝑝𝑝 and 𝐻𝐶𝑃 𝐴𝑝𝑝 due to the homomorphic property of exponentiation:

𝑍𝐴𝐵 = 𝑡𝐴
𝑟𝐵 = 𝑡𝐵

𝑟𝐴 . Figure 2 below depicts the described crypto model.

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

13

Figure 2 – D2D crypto-model

The conceptual sequence diagram that provides a high-level overview of the D2D is depicted in Figure 3,

where the Diffie-Hellman key agreement protocol is hidden behind the exchanged steps. Following a

detailed description of the sequence diagram of D2D to achieve encrypted communication:

● Step 1: This step is part of the Diffie-Hellman key agreement protocol. More specifically, the HCP

app is the initiator of the protocol to agree both the HCP and the S-EHR in secret keys for

symmetric key encryption/decryption. The step demonstrates the transfer of the HCP’s public part

of the agreement.

● Step 2: This step is part of the Diffie-Hellman key agreement protocol. The step demonstrates the

transfer of the S-EHR’s app public part of the agreement. After this step both parties calculate and

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

14

agree on a common symmetric key and hence are able to encrypt/decrypt the communication

channel.

Figure 3 – D2D sequence diagram

 D2D Security APIs 3.2
This section includes the security APIs for the secure communication in the D2D protocol. The HCP Web

App initiates the procedure of the Diffie-Hellman key agreement, while both the S-EHR App and HCP Web

App provide the functionalities of symmetric encryption and decryption for the D2D protocol.

3.2.1 S-EHR App Security APIs

Operation HCPPublicKey

Name HCPPublicKey

Description HCP sends his/her public key to the S-EHR App.

Arguments ● String publicKey

Return Value ● void

Exceptions ● Exception

Preconditions ● Successful acquisition of public key

3.2.2 HCP App Security APIs

Operation citizenPublicKey

Name citizenPublicKey

Description S-EHR app sends his/her public key to the HCP.

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

15

Arguments ● String publicKey

Return Value ● void

Exceptions ● Exception

Preconditions ● Successful acquisition of public key

 R2D Access Security Architecture and Models 3.3
The R2D Access protocol is used for importing health records stored within an EHR of a healthcare

organization to a smart mobile device [D4.3]. As already written, prior to any security operation a

bootstrap phase is necessary in order for all the participants in the protocol to acquire the necessary

elements. Regarding R2D Access, all the involved parties should have acquired the necessary Certificates

from the CA, including the Certificates of the eIDAS Node 𝐶𝐸, the Certificate of the S-EHR App 𝐶𝐴and the

Certificate of the Healthcare EHR 𝐶𝐿. Each certificate is associated with a private and a public key. For

instance, in the S-EHR app with the private 𝑃𝑟𝐴and the public 𝑃𝑢𝑏𝐴. eIDAS defines citizens as persons and

organisations that seek online services from any EU member state using their domestic eID with assured

security, cost- and time-efficiencies, and usability [KENNEDY2016]. The proprietary national input is

mapped and conditioned through the eIDAS Node in Country-A to an interoperable transport form, the

eIDAS SAML Assertion. Such assertions can be requested during an authentication request by a Service

Provider (SP) through an eIDAS Connector in Country-B [ESENS2017]. More details regarding eIDAS and

eIDAS-based identification are provided in [D3.4].

Both the Certificates and a successful eIDAS-based authentication must be retrieved in order to achieve all

the necessary crypto operations. In section 3.1 above is explained how the Certificates acquired from a CA,

while the detailed eIDAS authentication steps are included in [D4.3]. After a successful cross-border

authentication with the eIDAS infrastructure an authentication token with a certain validity period is stored

in the mobile for future usage. Figure 4 depicts the R2D Access crypto-model for data encryption

mechanism. After successful authentication with the utilisation of the eIDAS Infrastructure, and a TLS

handshake for key agreement, the encrypted communication is achieved symmetrically using the HTTPS

protocol. The symmetric key established form the TLS handshake is depicted as 𝑍𝐴𝐵and the symmetric key

used for data storage is depicted as 𝑍𝐴. The latter is generated with a KDF function in the S-EHR app to

achieve high entropy. Since encryption will be used at a network layer, no security APIs and sequence

diagram will be provided for the R2D Access encryption mechanisms.

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

16

Figure 4 – R2D Access crypto-model

The TLS handshake2 is depicted in Figure 5 and involves a series of steps, which accomplish the three main

tasks a) exchanging encryption capabilities, b) authenticating the certificate, and c) exchanging/generating

a session key. Handshake is a necessary step prior to the encryption in order to agree on a set of keys for

both parties. The handshake can currently use 5 different algorithms to do the key exchange: RSA, Diffie-

Hellman, Elliptic Curve Diffie-Hellman and the ephemeral versions of the last two algorithms. Following a

detailed description of the TLS handshake steps:

● Step 1: This step is called the “Client Hello” and lists the client’s capabilities so that the server can

pick the cipher suite that the two will use to communicate. It also includes a large, randomly picked

prime number called a client random or nonce.

● Step 2: The server responds with a “Server Hello” message, where it tells the client what

connection parameters it has selected from the provided list and returns its own randomly selected

prime number called a server random or nonce. If the client and server do not share any

capabilities in common, the connection terminated unsuccessfully.

● Step 3: In the “Certificate” message, the Server sends its certificate chain to the client. To provide

authentication to the connection certificate is signed by a CA, which allows the client to verify that

the certificate is legitimate. Upon receipt, the client checks the certificate’s digital signature,

2
 https://datatracker.ietf.org/doc/html/rfc524

https://datatracker.ietf.org/doc/html/rfc524

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

17

verifying the certificate chain, and any other potential problems with the certificate data (expired

certificate, wrong domain name, etc).

● Step 4: In this step, the “ServerHelloDone” message informs the client that it has sent over all its

messages.

● Step 5: The client then provides its contribution to the session key. The specifics of this step depend

on the key exchange method that was decided on in the initial “Hello” messages.

● Step 6: The “ChangeCipherSpec” message lets the other party know that it has generated the

session key and is going to switch to encrypted communication.

● Step 7: The “Finished” message is then sent to indicate that the handshake is complete on the

client side. The Finished message is encrypted, and is the first data protected by the session key.

The message contains the message authentication code (MAC) that allows each party to make sure

the handshake was not tampered with.

● Step 8: Server decrypts the pre-master secret and computes the session key. Then it sends its

“Change Cipher Spec” message to indicate it is switching to encrypted communication.

● Step 9: In the last step, the server sends its “Finished” message using the symmetric session key it

just generated, it also performs the same check-sum to verify the integrity of the handshake.

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

18

Figure 5 – TLS handshake protocol

 R2D Backup Security Architecture and Models 3.4
The R2D Backup protocol, as its name suggests, defines the set of operations that allow backup of

encrypted health data that is stored in a S-EHR mobile app to a S-EHR Cloud over the Internet [D4.3]. Prior

to the encrypted communication and storage phase, a successful authentication of the S-EHR App to the S-

EHR Cloud is needed. In this scenario, a simple username/password authentication mechanism is

performed that returns a JWT authentication token. More information regarding the authentication aspects

will be provided in the [D3.4]. In the S-EHR Cloud symmetric encryption will be used for secure transport

and storage. More specifically, S-EHR App encrypts the data for backup with AES 256 and uploads them to

the cloud for storage, after a successful authentication. The symmetric key is added in a QR code, in order

the HCP could access it for emergency cases. The R2D Backup scenario requires the involved parties to have

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

19

acquired the necessary Certificates from the CA (i.e. 𝐶𝐴, 𝐶𝐶) for the necessary crypto operations. Figure 6

depicts the R2D Backup crypto model. The S-EHR App decrypts the encrypted stored data (i.e.𝐷𝑒𝑐) with the

key 𝑍𝐴, re-encrypts (i.e.𝐸𝑛𝑐) them with a different symmetric key generated from a KDF the 𝑍𝐴𝐶 and stores

the data in the selected S-EHR Cloud. Last but not least, this new generated key will be added in the printed

QR code (i.e. 𝑄𝑅(𝑍𝐴𝐶 , 𝜎𝛢(𝑍𝐴𝐶)) along with S-EHR App’s signature for emergency cases, where authorised

HCPs can have access and download the encrypted data and based on the scanned QR code to decrypt

them.

Figure 6 – R2D Backup crypto-model

The conceptual sequence diagram that provides a high-level overview R2D Backup is presented in Figure 7.

The S-EHR App generates a symmetric key and a QR-code that includes the symmetric key used to encrypt

his/her medical data prior to backup to the S-EHR Cloud. Following a detailed description of the sequence

diagram of R2D Backup encryption mechanism:

● Step 1-2: These steps demonstrate secure upload of the health records. The encryption of the

health records, registration and secure upload are performed on the selected S-EHR cloud by

providing the encrypted data and the JWT token.

● Step 3-4: These steps demonstrate secure download of the health records. After the download of

the health records decryption with the same symmetric key is needed to access the health records.

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

20

Figure 7 – R2D Backup sequence diagram

 R2D Backup Security APIs 3.5
This section includes the security APIs for the encryption mechanism in the R2D Backup protocol. The S-EHR

App provides the functionality of symmetric encryption for data in transit and in storage.

3.5.1 S-EHR Cloud Security APIs

Operation create

Name Create

Description This API is invoked by the S-EHR app to register and encrypted upload his/her
health records. The citizen encrypts a health data resource on the S-EHR app
and uploads it on the S-EHR cloud. This is a POST request to
http://[baseurl]/citizen/upload?objectName={$ResourceCategory}

Arguments ● String encryptedHelathRecord: the encrypted payload.
● String token: the JWT authorization token

Header:
“Authorization”: Authentication token - JSON Web token

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

21

Return Value ● Acknowledgement: String

HTTP Return Codes:
200 Successful: request was successfully processed.
400 Bad request: request could not be processed.
404 Not Found: User with that username is not found.
500 Internal Server Error: server encountered an unexpected internal error, the
request could not be processed.

Exceptions ● Exception

Preconditions ● Successful JWT authorization
● Symmetric key agreement established
● Health Records are successfully encrypted

Operation get

Name Get

Description This API is invoked by the S-EHR app to download his/her encrypted health
records. The citizen downloads an encrypted health data resource from the S-
EHR cloud and decrypts it locally on the S-EHR app. This is a GET request to
http://[baseurl]/citizen/{$bucketName}/{$objectName}

Arguments ● String token: the JWT authorization token
● String objectInfo: information related to the requested record

Header:
“Authorization”: Authentication token - JSON Web token

Return Value ● Encrypted Health Data Resource: EncryptedBundle

HTTP Return Codes:
200 Successful: request was successfully processed.
400 Bad request: request could not be processed.
404 Not Found: User with that username is not found.
500 Internal Server Error: server encountered an unexpected internal error, the
request could not be processed.

Exceptions ● Exception

Preconditions ● Successful JWT authorization

 R2D Emergency Architecture and Models 3.6
The R2D Emergency protocol defines the set of operations that allow authorized HCPs to access the

encrypted health data that is backed up on a S-EHR Cloud of a citizen in need during an emergency

situation over the Internet [D4.3]. In this protocol, only authorised HCPs are allowed to access a citizen’s

health data. An Attribute Based Access Control (ABAC) mechanism will be utilised to make an access control

decision based on the HCPs assigned attributes of the requester, the assigned attributes of the object (e.g.

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

22

health data), environment conditions (e.g. location, temperature etc.), and a set of policies that are

specified in terms of those attributes and conditions. More details regarding the authorization phase are

included in the [D3.8]. Figure 8 depicts the R2D Emergency crypto model. The HCP App will be able to

acquire the symmetric key 𝑍𝐴𝐶after scanning the QR code (generated in R2D Backup protocol - Section 3.5).

Finally, the HCP App downloads the encrypted data and decrypt (i.e. 𝐷𝑒𝑐) them using the acquired

symmetric key 𝑍𝐴𝐶 .

Figure 8 – R2D Emergency crypto-model

The conceptual sequence diagram that provides a high-level overview R2D Emergency is presented in

Figure 9. In cases of emergency the HCP scans the QR-code to retrieve the symmetric key and after

successful authorization to the cloud and downloads the encrypted data. Once the emergency occurs, the

citizen is transferred to a healthcare facility. With the phone being unreachable the HCP that cures the

citizen (from now on called patient), uses their HCP app to connect to the S-EHR Cloud service that the

patient uses in order to access their health data. More details for the authorization aspects will be provided

in [D3.8]. Following a detailed description of the sequence diagram of R2D Emergency encryption

mechanism:

● Step 1-2: These steps demonstrate secure upload of the newly generated health records. The

encryption of the health records and secure upload are performed with the symmetric key scanned

from the QR.

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

23

● Step 3-4: These steps demonstrate secure download of the health records. After successful

authorization and download of the encrypted data, the HCP can use the already scanned symmetric

key to decrypt the data and get access to the needed patient’s medical data.

Figure 9 – R2D Emergency sequence diagram

 R2D Emergency Security APIs 3.7
This section includes the security APIs for the encryption mechanism in the R2D Emergency protocol. The

HCP Web App provides the functionality of decryption for the encrypted data.

3.7.1 S-EHR Cloud Security APIs

Operation create

Name create

Description This API is invoked by the HCP app to upload newly generated health records.
The HCP encrypts a health data resource on the HCP app and uploads it on the
S-EHR cloud using the scanned symmetric key. This is a POST request to
http://[base url]/hcp/upload?objectName={$ResourceCategory}

Arguments ● HCP attributes: String
● Encrypted health data resource: EncryptedBundle
● Health data type: ResourceCategory

Header:
“Authorization”: Health care institution authentication token: JSON Web token

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

24

Return Value ● Acknowledgement: String

HTTP Return Codes:
200 Successful: request was successfully processed.
400 Bad request: request could not be processed.
404 Not Found: User with that username is not found.
500 Internal Server Error: server encountered an unexpected internal error, the
request could not be processed.

Exceptions ● Missing header: Health care institution authentication token
● Missing argument: HCP attributes
● Missing argument: Encrypted health data resource
● Missing argument: Metadata

Preconditions ● Symmetric key agreement established
● Health Records are successfully encrypted
● The citizen should have agreed to share their health data with

authorized HCPs during emergency situations.

● The health care institution should have already been granted access.

Operation get

Name get

Description This API is invoked by the HCP app to download citizen’s encrypted health
records for emergency purposes. The authorized HCP downloads an encrypted
health data resource from the S-EHR cloud and decrypts it locally on the HCP
app. This is a GET request to
http://[baseurl]/hcp/{$bucketName}/{$objectName}

Arguments ● HCP attributes: String
● Health data type: ResourceCategory
● Bucket containing the object: String

Header:
“Authorization”: Health care institution authentication token: JSON Web token

Return Value ● EncryptedBundle: The health data resource requested

HTTP Return Codes:
200 Successful: request was successfully processed.
400 Bad request: request could not be processed.
404 Not Found: User with that username is not found.
500 Internal Server Error: server encountered an unexpected internal error, the
request could not be processed.

Exceptions ● Missing header: Health care institution authentication token
● Missing argument: HCP attributes
● Missing argument: Encrypted health data type

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

25

● Missing argument: Bucket name

Preconditions ● The citizen should have agreed to share their health data with
authorized HCPs during emergency situations.

● The health care institution should have already been granted access.

 RDS Security Architecture and Models 3.8
The RDS protocol specifies the technical means to citizens for the sharing of their health data for the

purposes of cross-border medical research, in a cross-border interoperable manner [D4.9], while in some

cases (e.g. data not able to be stored in the mobile) gives the ability to the research centers to download in

a secure and anonymous manner. In terms of privacy preservation, two variants are used [D6.8], one

standardized with the state-of-the-art crypto primitives for enriching privacy and one with the currently

adopted mechanisms by the end-users. More specifically, the first variant is the pseudo-identity, which is

generated at the RRC if the citizen gives his/her consent to participating in the study. The second variant is

the pseudonym which is generated by the Pseudonym Provider and leverages an eIDAS-based architecture

for cross-border identification/authentication to the PP. More information regarding these aspects will be

provided in [D6.8] and [D3.4]. As already stated in [ENISA2021], there is no fit-for-all pseudonymisation

technique and a detailed analysis of the case is necessary. The usage of the second variant does not

enhance the applicability of the InteropEHRate framework but allows to perform a detailed investigation of

new privacy-preserving enablers that can extend the state of the art and be potentially considered as a new

standard. Pseudonymisation can go beyond hiding real identities and data minimisation into supporting the

unlinkability [ENISA2021] making high entropy pseudonyms necessary.

As aforementioned, the encrypted communication between the S-EHR app and RRC is achieved with AES

symmetric encryption, after the successful Diffie-Helman key agreement, while the encrypted

communication between the RRC and the HCP After is achieved via TLS using the HTTPS protocol, after

successful authentication. This section describes the security models in the context of RDS for encrypted

communication between the S-EHR app and the RRC. As with the previous protocols, S-EHR App and RRC

already have access to the needed Certificates (𝐶𝐴, 𝐶𝐸 , 𝐶𝑅). On demand prior to the RDS protocol, S-EHR

App and RRC run the Diffie-Hellman key agreement phase to establish a shared key 𝑍𝐴𝑅(the same used in

Figure 2). One of the two 𝑝𝑖𝑑 (pseudo-id - variant 1) or 𝑝𝑠𝑒𝑢(pseudonym - variant 2) based on the variant

will be used to anonymize the data (i.e. 𝐴𝑛- anonymous signing) and the encrypted (i.e. 𝐸𝑛𝑐) with the

agreed key is transferred to the RRC. The RRC decrypts (i.e. 𝐷𝑒𝑐) with the same key the data, verifies the

anonymous signature (currently this is not depicted for space reasons - the certificate is assumed that is

sent along with the anonymised data) and retrieves the anonymised data for further process and survey.

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

26

Figure 10 – RDS crypto-model

The conceptual sequence diagram that provides a high-level overview of RDS in Figure 11, where the

encryption communication flow is depicted. Following a detailed description of the sequence diagram of

RDS encryption mechanism:

● Step 1: The step demonstrates the transfer of encrypted data from the S-EHR app to the RRC. The

decryption process is taking place on the RRC side.

Figure 11 – RDS sequence diagram

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

27

 RDS Security APIs 3.9
This section includes the security APIs for the encryption mechanism in the RDS protocol. The RRC initiates

the procedure of the Diffie-Hellman key agreement, while the S-EHR App and RRC provide the

functionalities of symmetric encryption and decryption for data in transit respectively.

3.9.1 RRC Security APIs

Operation sendHealthData

Name sendHealthData

Description This API allows a S-EHR App to send encrypted citizen health data to a Research
Centre. The receiving RC verifies and decrypts the encrypted and signed
payload healthData and retrieves the FHIR bundle contained within. This is a
POST request to http://<BASE_ADDR>/sendHealthData?studyID=<studyID>

Arguments URL params:
studyID: the ID of the study in which the Citizen is enrolling;
The POST body content is a JSON file defined as follows:
{
 "citizen-pseudo": <citizen-pseudo>,
 "health-data": <health-data>
}
where:
<citizen-pseudo>: the study-specific pseudonym or pseudo-identity of the
Citizen;
<health-data>: a FHIR bundle containing the health data (resources, attributes,
values) necessary for the study, in an encrypted form, as well as the responses
to research questionnaire(s) provided by the Citizen if available

Header:
Content-Type: application/fhir+json

Return Value HTTP return codes:
200 Successful: request was successfully processed.
400 Bad Request: search could not be processed or failed basic FHIR validation
rules.
401 Not Authorized: authorisation is required for the interaction that was
attempted.
403 Forbidden: client is not allowed to access requested resources due to
security policy.
404 Not Found: resource type not supported, or not a valid FHIR endpoint.
406 Not Acceptable: client requested a not supported content-type format.
500 Internal Server Error: server encountered an unexpected internal error, the
request could not be processed.

Exceptions The call’s exceptions returned are added as text messages within the HTTP
response body which is defined as follows:
{
 "timestamp":<timestamp>,

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

28

 "status":<http-status-code>,
 "error":<code-description>,
 "message":<exception message>,
 "path":<request-path>
}
where:

● <timestamp> : response timestamp;
● <http-status-code> : one of the http codes listed in the previous row;
● <code-description> : description of http code;
● <request-path> : http request’s URL;
● <exception message> : the following text message:

○ invalid content (study ID, pseudo-identity, healthData)

Preconditions ● The Citizen must have enrolled into the study previously.
● The S-EHR App must have access to the Citizen’s private key to encrypt

the health data, and the called Research Centre must have access to the
Citizen’s public key to be able to decrypt it.

 Security Commons Architecture and Models 3.10
As already mentioned, prior to any security operation, the bootstrap phase will take place in order for all

the participants in the protocol to agree on the necessary elements and acquire the needed X.509

Certificates. This prerequisite phase applies to all the scenarios if certificates are missing and an Internet

connection is necessary. This section describes the security commons for all the protocols and more

specifically the interaction with the CA and the corresponding APIs. The Certificate Authority provides the

services exposed through the Certificate Authority Interface (CAI) [EJBCA 2021], where CAI is a web service

interface. In addition, since the eIDAS-based authentication will be adopted in the InteropEHRate project, a

cooperation between these two services will benefit for a seamless Certificate generation based on the

eIDAS acquired attributes of the eIDAS token 𝑒𝑖𝑑𝑡𝑘𝑛.

The Root CA is always a self-signed certificate 𝐶 𝐶𝐴. The root certificate, often called a trusted root, is at

the center of the trust model that undergirds PKI. Every device includes something called a root store. A

root store is a collection of pre-downloaded root certificates (and their public keys) that live on the device

itself. As already introduced in [D3.9], EJBCA offers a multipurpose PKI software that supports multiple CAs

and levels of CAs to enable one to build a complete infrastructure (or several) for multiple use cases within

one instance of the software. EJBCA enables multiple integration and automation possibilities and issues

certificates to persons, infrastructure components and IoT (Internet of Things) devices. The high-level steps

in order for an entity (e.g. the citizen, the healthcare professional etc.) to retrieve a certificate is the

following:

1. Entity (e.g. the citizen, the healthcare professional) generates a private/public key pair 𝑟𝐴/𝑡𝐴,

keeping the private key secret.

2. Entity crafts a certificate signing request (CSR) and submits it to the CA. CSR usually contains the

public key 𝑡𝐴 for which the certificate should be issued, identifying information

𝑒𝑖𝑑𝑡𝑘𝑛 𝑎𝑛𝑑 𝑎𝑡𝑡𝑟and integrity protection (e.g., a digital signature) 𝜎𝑟𝐴
. The most common format

for CSRs is the PKCS #10 specification. The CSR may be accompanied by other credentials or proofs

of identity required by the certificate authority.

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

29

3. If the request is successfully verified 𝑉𝑒𝑟, the CA issues a certificate that has been digitally signed

using the private key of the CA and records it in the CA’s database.

4. Entity verifies 𝑉𝑒𝑟its own Certificate and presents the certificate to the another entity for

identification purposes (e.g. S-EHR App to HCP App)

5. The other entity presumably has the signing certification authority’s certificate or can get it if

Internet connection is available. Then verifies𝑉𝑒𝑟 the validity of the Certificate.

6. The other entity checks that the certificate does not appear on the Certificate Revocation List (CRL)

if Internet connection is available.

7. If 4, 5, and 6 all check out, the client will accept the certificate.

In case of D2D steps that require Internet connection will happen later in time, when Internet will be

available. The reasoning behind separating the eIDAS token (Certificate form eIDAS) from the CA Certificate

attributes, is that the eIDAS token includes a predefined attributes list, however, in the context of R2D

Emergency more attributes are needed for access control purposes (e.g. the hospital name and the role).

The eIDAS token will be used for identification purposes to verify and validate the identity of the requestor

and the additional attributes will be used as extra information for the CA's X.509 Certificate generation.

Figure 12 – Security commons crypto-model

The conceptual sequence diagram that provides a high-level overview of RDS in Figure 13, where common

security flows are depicted. Following a detailed description of the sequence diagram:

● Step 1: An entity (e.g. S-EHR App, HCP App etc.) request from the CA to issue a certificate. In

cases where the entity is an eIDAS registered, CA verifies the identity of the entity through the

eIDAS infrastructure.

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

30

● Step 2: An entity (e.g. S-EHR App, HCP App etc.) request from the CA to reissue a lost certificate. In

cases where the entity is an eIDAS register, CA verifies the identity of the entity through the eIDAS

infrastructure.

● Step 3: An entity (e.g. S-EHR App, HCP App etc.) requests a certificate based on the alias and other

optional attributes.

● Step 4: An entity (e.g. S-EHR App, HCP App etc.) checks the validity of a certificate.

Figure 13 – Security commons sequence diagram

 Security Commons APIs 3.11

Operation getUserCertificate

Name getUserCertificate

Description Retrieves a valid certificate generated for a user from the CA server.

Arguments ● String alias: User alias (e.g. GRxavi)
● String country (optional)
● String username (optional)

Return Value ● String Certificate data

Exceptions ● Exception, in case of error.

Preconditions ● CA server is available
● An existing user and a server-generated keystore.

Operation validateUserCertificate

Name validateUserCertificate

Description Checks if certificate is valid

Arguments ● String certificateData

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

31

Return Value ● A boolean value, “true” meaning that the signature was successfully
verified.

Exceptions ● Exception, in case of error.

Preconditions ● CA server is available

Operation CertificationWebViewActivity

Name CertificationWebViewActivity

Description This activity handles the redirection of the user to the eIDAS registration page
hosted by the Trusted Proxy Server. The Trusted Proxy Server is responsible for
managing all the communication between the eIDAS infrastructure and the S-
EHR App.

Arguments ● String register_url: the register url of the Trusted Proxy Server. The user
is redirected to this url in order to add his/her eIDAS credentials

Return Value ● String keystore: a keystore with eidas authentication

Exceptions ● N/A

Preconditions ● Trusted Proxy Server is available

Operation LostCertificateWebViewActivity

Name LostCertificateWebViewActivity

Description This activity handles the redirection of the user to the eIDAS lost certificate
page
hosted by the Trusted Proxy Server. The Trusted Proxy Server is responsible for
managing all the communication between the eIDAS infrastructure and the S-
EHR App.

Arguments ● String lost_certificate_url: the lost certificate url of the Trusted Proxy
Server. The user is redirected to this
url in order to add his/her eIDAS credentials

Return Value ● String keystore: a keystore with eidas authentication

Exceptions ● N/A

Preconditions ● Trusted Proxy Server is available

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

32

 CONCLUSIONS 4
In this report, it’s defined the second and final version of the specification of data encryption mechanisms

for mobile and web applications. A technical background with state-of-the-art encryption mechanisms and

crypto primitives are also provided. More specifically, this deliverable includes the detailed crypto models

and encryption/decryption aspects of all the involved architecture components (e.g., S-EHR App, HCP Web

App, S-EHR Cloud, Central Node and Reference Research Center), protocols (e.g., D2D, R2D Access, R2D

Backup, R2D Emergency, RDS), and scenarios (e.g., Medical Visit, Emergency and Research) for data at rest

and in-transit. Last but not least, the deliverable includes the detailed crypto models for the security

common for all scenarios functionalities (e.g. interaction with a CA for certificate generation). This final

version of the deliverable acts as the detailed specification of encryption and decryption purposes defined

in the context of InteropEHRate.

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

33

REFERENCES

● [Benaloh1988] J. Benaloh and L. J. Generalized Secret Sharing and Monotone Functions. In

Advances in Cryptology – CRYPTO, volume 403 of LNCS, pages 27–36. Springer, 1988

● [Brickell1989] E. F. Brickell. Some ideal secret sharing schemes. Journal of Combinatorial

Mathematics and Combinatorial Computing, 6:105–113, 1989

● [Bethencourt2007] Bethencourt J, Sahai A, Waters B (2007) Ciphertext-policy attribute-based

encryption. In: Proceedings of the 2007 IEEE Symposium on Security and Privacy, SP’07. IEEE

Computer Society, Washington, DC, pp 321–334.

● [Zhang2010] Zhang R, Liu L (2010) Security models and requirements for healthcare application

clouds, in: 2010 IEEE 3rd International Conference on cloud Computing, IEEE, pp 268–275

● [Li2010] Li M, Yu S, Ren K, Lou W (2010) Securing personal health records in cloud computing:

patient-centric and fine-grained data access control in multi-owner settings. In: International

conference on security and privacy in communication systems. Springer, pp 89–106

● [Brucker2010] Brucker AD, Petritsch H, Weber SG (2010) Attribute-based encryption with break-

glass. In: IFIP International Workshop on Information Security Theory and Practices. Springer, pp

237–244

● [Mashima2012] Mashima D, Ahamad M (2012) Enhancing accountability of electronic health 660

record usage via patient-centric monitoring, in: Proceedings of the 2nd ACM SIGHIT International

Health Informatics Symposium, ACM, pp 409–418

● [Abbas2014] Abbas A, Khan SU (2014) A review on the state-of-the-art privacy-preserving

approaches in the e-health clouds. IEEE J Biomed Health Inform 18(4):1431–1441

● [Zhang2016] Zhang T, Chow SS, Sun J (2016) Password-controlled encryption with accountable

break-glass access. In: Proceedings of the 11th ACM on Asia Conference on Computer and

Communications Security. ACM

● [Scafuro2019] Scafuro A, Break-glass encryption. In: IACR International Workshop on Public Key

Cryptography. Springer, pp 34–62, 2019.

● [Yang2019] Yang, Y.; Zheng, X.; Guo, W.; Liu, X.; Chang, V. Privacy-preserving smart IoT-based

healthcare big data storage and self-adaptive access control system. Inf. Sci. 2019, 479, 567–592.

● [Oliveira2020] T. de Oliveira, M., Bakas, A., Frimpong, E. et al. A break-glass protocol based on

ciphertext-policy attribute-based encryption to access medical records in the cloud. Ann.

Telecommun. 75, 103–119 (2020).

● [La2006] Los Angeles Times, “At Risk of Exposure - in the Push for Electronic Medical Records,

Concern Is Growing About How Well Privacy Can Be Safeguarded,” 2006.

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

34

● [Lisonek2008] Lisonek, D. AND Drahansky, M. 2008. SMS Encryption for Mobile Communication. In

SECTECH '08: Proceedings of the 2008 International Conference on Security Technology. IEEE

Computer Society, Washington, DC, USA, pp. 198-201.

● [Li2013] Li, M., Yu, S., Zheng, Y., Ren, K., & Lou, W. (2013). Scalable and Secure Sharing of Personal

Health Records in Cloud Computing Using Attribute-Based Encryption. IEEE Transactions on Parallel

and Distributed Systems, 24(1), 131–143. doi:10.1109/tpds.2012.97

● [androidd2020] Android Open Source Project, “Full-disk Encryption”, 2020. Web site:

https://source.android.com/security/encryption/full-disk

● [androidf2020] Android Open Source Project, “File-based Encryption”, 2020 Web

site: https://source.android.com/security/encryption/file-based

● [kaspersky] Kaspersky, “iPhone Encryption: How to Encrypt Your iPhone”. Web site:

https://usa.kaspersky.com/resource-centerz/preemptive-safety/iphone-encryption

● [applesec] Apple Platform Security, “Encryption and Data Protection overview”. Web site:

https://support.apple.com/guide/security/encryption-and-data-protection-overview-

sece3bee0835/1/web/1

● [nield2020] David Nield, “How to Get the Most Out of Your Smartphone's Encryption”, 2020. Web

site: https://www.wired.com/story/smartphone-encryption-apps/

● [appledev] Apple Developer Documentation, “Encrypting Your App’s Files”. Web site:

https://developer.apple.com/documentation/uikit/protecting_the_user_s_privacy/encrypting_you

r_app_s_files

● [microsoftder2019] Microsoft, “Data Encryption at Rest”, 2019. Web site:

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/security/transparent-

data-encryption

● [microsofttde2019] Microsoft, “Transparent Data Encryption (TDE)”, 2019. Web site:

https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-

encryption?view=sql-server-ver15

● [Townsend] Townsend Security, “The Definitive Guide to MongoDB Encryption & Key

Management”. Web site: https://info.townsendsecurity.com/mongodb-encryption-key-

management-definitive-guide

● [Lecroy] Teledyne Lecroy, “How Encryption Works in Bluetooth”. Web site:

http://www.fte.com/webhelp/bpa500/Content/Documentation/WhitePapers/BPA600/Encryption/

HowEncryptionWorks.htm

● [Loveless2018] Mark Loveless, “Understanding Bluetooth Security”, 2018. Web site:

https://duo.com/decipher/understanding-bluetooth-security

● [Corella2015] Francisco Corella, “Has Bluetooth Become Secure?”, 2015. Web site:

https://pomcor.com/2015/06/03/has-bluetooth-become-secure

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

35

● [bon2016] Matthew Bon, “A Basic Introduction to BLE Security”, 2016.

https://www.digikey.com/eewiki/display/Wireless/A+Basic+Introduction+to+BLE+Security

● [Ravikiran] Ravikiran HV, “Security Considerations For Bluetooth Smart Devices”. Web site:

https://www.design-reuse.com/articles/39779/security-considerations-for-bluetooth-smart-

devices.html

● [Prodromou2019] Agathoklis Prodromou, “TLS Security 5: Establishing a TLS Connection”, 2019.

Web site: https://www.acunetix.com/blog/articles/establishing-tls-ssl-connection-part-5/

● [Lake2019] Josh Lake, “What is TLS and how does it work?”, 2019. Web site:

https://www.comparitech.com/blog/information-security/tls-encryption/

● [Sullivan2018] Nick Sullivan, “A Detailed Look at RFC 8446 (a.k.a. TLS 1.3)”, 2018. Web site:

https://blog.cloudflare.com/rfc-8446-aka-tls-1-3/

● [Kothari2019] Kewal Kothari, “How does SSL/TLS make HTTPS secure?”, 2019. Web site:

https://hackernoon.com/how-does-ssl-tls-make-https-secure-d247bd4e4cae

● [SW05] Amit Sahai and Brent Waters. Fuzzy Identity-Based encryption. In Ronald Cramer, editor,

EUROCRYPT, volume 3494 of Lecture Notes in Computer Science, pages 457473. Springer, 2005.

● [BF03] Dan Boneh and Matthew Franklin. Identity-based encryption from the weil pairing. SIAM J.

Comput., 32(3) :586615, March 2003.

● [KRS+03] Mahesh Kallahalla, Erik Riedel, Ram Swaminathan, Qian Wang, and Kevin Fu. Plutus,

Scalable secure file sharing on untrusted storage. In Proceedings of the 2nd USENIX Conference on

File and Storage Technologies, pages 2942, Berkeley, CA, USA, 2003. USENIX Association.

● [GSMB03] Eu-jin Goh, Hovav Shacham, Nagendra Modadugu, and Dan Boneh. Sirius : Securing

remote untrusted storage. Network and distributed systems security, NDSS'03, pages 131145,

2003.

● [BCHL09] Josh Benaloh, Melissa Chase, Eric Horvitz, and Kristin Lauter. Patient controlled

encryption: ensuring privacy of electronic medical records. In Proceedings of the 2009 ACM

workshop on Cloud computing security, CCSW '09, pages 103114, New York, NY, USA, 2009

● [dVFJ+07] Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Stefano Paraboschi, and

Pierangela Samarati. Over-encryption : management of access control evolution on outsourced

data. In Proceedings of the 33rd international conference on Very large data bases, VLDB '07, pages

123134, 2007.

● [WLOB09] Weichao Wang, Zhiwei Li, Rodney Owens, and Bharat Bhargava. Secure and efficient

access to outsourced data. In Proceedings of the 2009 ACM workshop on Cloud computing security,

CCSW '09, pages 5566, New York, NY, USA, 2009.

● [Lounis2014] Ahmed Lounis. Security in cloud computing. Other. Université de Technologie de

Compiègne, 2014. English.: 2014COMP1945ff. Fftel-01293631f https://tel.archives-ouvertes.fr/tel-

01293631/document

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

36

● [GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption

for ne-grained access control of encrypted data. In Proceedings of the 13th ACM conference on

Computer and communications security, CCS '06, pages 8998, New York, NY, USA, 2006

● [BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-Policy Attribute-Based

encryption. In Proceedings of the IEEE Symposium on Security and Privacy, SP '07, pages 321334,

Washington, DC, USA, 2007

● [PKI] Thales, What is Public Key Infrastructure (PKI)? Website:

https://www.thalesesecurity.com/faq/public-key-infrastructure-pki/what-public-key-

infrastructure-pki

● [Uahhabi2014] Z. El Uahhabi and H. El Bakkali, "A comparative study of PKI trust models," 2014

International Conference on Next Generation Networks and Services (NGNS), 2014, pp. 255-261,

doi: 10.1109/NGNS.2014.6990261.

● [Ghulam2018] Ghulam Mustafa, Rehan Ashraf, Muhammad Ayzed Mirza, Abid Jamil, Muhammad:

A review of data security and cryptographic techniques in IoT based devices. ICFNDS 2018: 47:1-

47:9

● [owasp2020] OWASP, OWASP Mobile Top 10: A Comprehensive Guide For Mobile Developers To

Counter Risks, 2020,

● [nist800-111] NIST 800-111, Guide to Storage Encryption Technologies for End User Devices,

Recommendations of the National Institute of Standards and Technology, 2007,

https://www.hhs.gov/sites/default/files/nist800111.pdf

● [Madnani2013] Madnani, B., & Sreedevi, N. (2013). Attribute Based Encryption for Scalable and

Secure Sharing of Medical Records in Cloud Computing Design and Implementation. International

Journal of Innovative Research in Computer and Communication Engineering, 1(3).

● [IAP09] L. Ibraimi, M. Asim, and M. Petkovic. Secure management of personal health records by

applying attribute-based encryption. In 6th International Workshop on Wearable Micro and Nano

Technologies for Personalized Health, pHealth'09, pages 7174, Oslo, Norway, June 2009.

● [LYRL10] Ming Li, Shucheng Yu, Kui Ren, and Wenjing Lou. Securing personal health records in

cloud computing : Patient-Centric and Fine-Grained data access control in multi-owner settings. In

Security and Privacy in Communication Networks, volume 50, pages 89106. Springer Berlin

Heidelberg, 2010.

● [ENISA2021] ENISA. “Pseudonymisation for Personal Data Protection”. 2021.

● [D3.1] InteropEHRate Consortium, D3.1 - Specification of S-EHR mobile privacy and security

conformance levels - V1, 2020. www.interopehrate.eu/resources

● [D2.6] InteropEHRate Consortium, D2.6 - InteropEHRate Architecture - V3, 2021.

www.interopehrate.eu/resources

https://www.thalesesecurity.com/faq/public-key-infrastructure-pki/what-public-key-infrastructure-pki
https://www.thalesesecurity.com/faq/public-key-infrastructure-pki/what-public-key-infrastructure-pki

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

37

● [D3.9] InteropEHRate Consortium, D3.9 - Design of libraries for HR security and privacy services -

V1, 2019. www.interopehrate.eu/resources

● [D3.4] InteropEHRate Consortium, D3.4 - Specification of remote and D2D IDM mechanisms for HRs

Interoperability - V2, 2021. www.interopehrate.eu/resources

● [D3.8] InteropEHRate Consortium, D3.8 - Specification of consent management and decentralized

authorization mechanisms for HR Exchange - V2, 2021. www.interopehrate.eu/resources

● [D4.3] InteropEHRate Consortium, D3.4 - Specification of remote and D2D protocol and APIs for HR

exchange V3, 2021. www.interopehrate.eu/resources

● [D4.9] InteropEHRate Consortium, D4.9 - Specification of protocol and APIs for research health data

sharing - V2, 2021. www.interopehrate.eu/resources

● [D6.8] InteropEHRate Consortium, InteropEHRate D6.8-Design of a mobile service for data

anonymization and aggregation, 2021. www.interopehrate.eu/resources

● [CCC2020] Confidential Computing Consortium, Confidential Computing Consortium, 2020. Web

site: https://confidentialcomputing.io

● [IEEE2020] IEEE, The rise of confidential computing: Big tech companies are adopting a new

security model to protect data while it's in use. 2020. Web site:

https://ieeexplore.ieee.org/abstract/document/9099920

● [Göttel2019] C. Göttel et al., "Security, Performance and Energy Trade-Offs of Hardware-Assisted

Memory Protection Mechanisms," 2018 IEEE 37th Symposium on Reliable Distributed Systems

(SRDS), Salvador, Brazil, 2018, pp. 133-142, doi: 10.1109/SRDS.2018.00024.

● [Pires2019] Rafael Pereira Pires, “Distributed systems and trusted execution environments: Trade-

offs and challenges”, Thèse présentée à la Faculté des sciences pour l’obtention du grade de

Docteur ès sciences, 2019

● [Google2020] Introducing Google Cloud Confidential Computing with Confidential VMs, 2020. Web

site: https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-

confidential-computing-with-confidential-vms

● [EJBCA 2021] PrimeKey, EJBCA WS Support, 2021 https://download.primekey.se/docs/EJBCA-

Enterprise/latest/ws/index.html

● [eIDAS 2017] European Commission — DIGIT Unit D3, eIDAS-Node Installation, Configuration and

Integration Manual, Version 1.3, 2017

● [1609.2-2016] "IEEE Standard for Wireless Access in Vehicular Environments--Security Services for

Applications and Management Messages," in IEEE Std 1609.2-2016 (Revision of IEEE Std 1609.2-

2013), vol., no., pp.1-240, 1 March 2016, doi: 10.1109 / IEEESTD 2016 7426684.

● [THESSLSTORE2019] The Difference Between Root Certificates and Intermediate Certificates, 2019

Website:https://www.thesslstore.com/blog/root-certificates-intermediate/

https://www.thesslstore.com/blog/root-certificates-intermediate/

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

38

● [KENNEDY2016] Kennedy, E. and Millard, C., “Data security and multi-factor authentication:

Analysis of requirements under EU law and in selected EU Member States”, Computer Law &

Security Review, 32/1, 91-110, 2016.

● [ESENS2017] Masi , M., Bittins, S. Cunha, J. and Atzeni, A., “e-SENS 5.2 eHealth eIDAS eID Pilot:

Technical Feasibility Report”, 2017.

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

39

 APPENDIX A 5
This section summarises all the notions used in the design of the cryptographic libraries.

Symbol Description

𝐺 Multiplicative group

𝑔 Generator

𝑍𝑝
∗ Group

𝑟 Random value

𝑞, 𝑝 Large primes

𝜎 Cryptographic signature

𝑃𝑟 Private key

𝐶 Certificate

𝑉𝑒𝑟 Verify

𝑁 Nonce

𝑍 Symmetric key

𝐸𝑛𝑐 Encryption

𝐷𝑒𝑐 Decryption

𝐴𝑢𝑡ℎ Authentication/Authorization

𝑚 Health data

𝑄𝑅 QR code

𝑡𝑠𝑡𝑎𝑚𝑝 Timestamp

𝑇𝐼𝐷 Transient identifier - anonymous assertion

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

40

𝐿𝐼𝐷 Long-term identifier - real id

𝑝𝑖𝑑 Pseudo-id

𝑃𝐺𝑒𝑛 Pseudonym generation based on group signatures

𝑝𝑠𝑒𝑢 Pseudonym

𝐴𝑛 Anonymized the data with anonymous signing

𝐶𝑆𝑅 Certificate signing request

𝑒𝑖𝑑𝑡𝑘𝑛 eIDAS token

Table 3 - Notation used

JSON-schema for the D2D Security Message

The JSON-schema for the D2D requests is specified below:

{
 "$id": "http://example.com/example.json",
 "$schema": "http://json-schema.org/draft-07/schema",
 "description": "The root schema of a D2DSecurityMessage",
 "required": [
 "header",
 "operation",
 "body"
],
 "type": "object",
 "properties": {
 "header": {
 "$id": "#/properties/header",
 "type": "object",
 "title": "The header schema",
 "description": "An explanation about the purpose of this instance.",
 "default": {},
 "examples": [
 {
 "timeStamp": "2021-07-26T14:13:13.553Z",
 "agent": "JRE 1.8.0_261 - Windows 10 10.0",
 "protocol": "D2D",
 "version": "1"
 }
],
 "required": [
 "timeStamp",
 "agent",

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

41

 "protocol",
 "version"
],
 "properties": {
 "timeStamp": {
 "$id": "#/properties/header/properties/timeStamp",
 "examples": [
 "2021-07-26T14:13:13.553Z"
],
 "type": "string"
 },
 "agent": {
 "$id": "#/properties/header/properties/agent",
 "description": "The agent that created the message",
 "examples": [
 "JRE 1.8.0_261 - Windows 10 10.0"
],
 "type": "string"
 },
 "protocol": {
 "$id": "#/properties/header/properties/protocol",
 "default": "D2D",
 "description": "The name of the used protocol.",
 "enum": [
 "D2D"
],
 "type": "string"
 },
 "version": {
 "$id": "#/properties/header/properties/version",
 "default": "1",
 "description": "version of the protocol used",
 "type": "string"
 }
 },
 "additionalProperties": true
 },
 "operation": {
 "$id": "#/properties/operation",
 "description": "The name of the operation under execution of the D2D security protocol",
 "examples": [
 "HELLO_SEHR"
],
 "enum": [
 "HELLO_SEHR",
 "HELLO_HCP",
 "SEHR_PUBLIC_KEY",
 "HCP_PUBLIC_KEY",
 "UNSIGNED_CONSENT",
 "SIGNED_CONSENT"

InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2

42

],
 "type": "string"
 },
 "body": {
 "$id": "#/properties/body",
 "description": "The body of the message contains the exchanged data",
 "type": "string"
 }
 },
 "additionalProperties": true
}

JSON sample for HCPPublicKey message

{
 "header": {
 "timeStamp": "2021-07-26T14:13:13.553Z",
 "agent": "JRE 1.8.0_261 - Windows 10 10.0",
 "protocol": "D2D",
 "version": "1"
 },
 "operation": "HCP_PUBLIC_KEY",
 "body": "XTYRE8768LO8fwrqwm4l523k5203434279824jkhg2GTUYEbjgfg3232ljo9\u003d..."
}

JSON sample for citizenPublicKey message

{

 "header": {

 "timeStamp": "2021-07-26T14:13:14.553Z",

 "agent": "JRE 1.8.0_261 - Windows 10 10.0",

 "protocol": "D2D",

 "version": "1"

 },

 "operation": "SEHR_PUBLIC_KEY",

 "body": "MIHfMIGXBgkqhkiG9w0BAwEwgYkCQQD8poLOjhLKuibvzPcRDlJtsHiwXt3d..."

}

