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 INTRODUCTION  1
According to OWASP, two out of the top ten mobile risks are a) insecure communications and b) insecure 

data storage [owasp2020]. On one hand, insecure data transmission to and from a mobile app generally 

takes place through a telecom carrier and/or over the internet. Hackers intercept data either by interfering 

with the local area network of users through a compromised Wi-Fi network, by tapping into the network 

through routers, cellular towers, proxy servers, or by exploiting an infected app through malware. Insecure 

data storage is an easy way in which an adversary can access data in a mobile device. On the other hand, an 

adversary can either gain physical access to a stolen device or enter into it using malware or a repackaged 

app.  

Encryption is the main technique to mitigate both insecure communications and data storage. Healthcare 

data encryption has become a popular option for protecting sensitive medical information. The need for 

encryption has become more prevalent with the rapid increase in the number of practices using Electronic 

medical records (EMRs) and mobile devices. Encryption is a means to protect patient health information 

when it is transmitted from one user to another. 

In addition, the healthcare industry can benefit from cloud technology to facilitate communication, 

collaboration, and coordination among different healthcare providers. However, to ensure the patients’ 

control over access to their own health data, it is necessary to encrypt the data before they are transferred 

and stored in the cloud. In fact, outsourcing to the cloud brings several security risks.  

Due to the high value of sensitive health data, third-party storage servers are often the targets of various 

malicious behaviours which may lead to exposure of the data. That was the case of  the famous incident of 

the stored data in the Department of Veterans Affairs database containing sensitive PHI of 26.5 million 

military veterans, including their social security numbers and health problems that was stolen by an 

employee who took the data home without authorization  [La2006].  

Last but not least, in emergency situations, it is crucial, for sensitive encrypted data, to be able to be 

decrypted when a specific access control policy on who can decrypt the data applies [Bethencourt2007]. 

 Scope of the document 1.1
The main goal of the present document is to describe the InteropEHRate specification of protocols for 

encryption mechanics for both a) health data storage on mobile devices, HCP App and cloud services and b) 

health data exchange. Moreover, the deliverable describes the research conducted regarding encryption 

mechanisms. In a nutshell, for data encryption in-transit, we propose apart from having enabled the 

encryption mechanisms that are supported by Bluetooth and HTTPS over the Internet, an application level 

encryption for encrypted communication. In the same manner, for data encryption in storage apart from 

full disk encryption based on TEE mechanisms, we propose an application level encryption for encrypted 

storage. To this end, a detailed symmetric encryption/decryption specification concerning all the 

InteropEHRate protocols will be provided. 

 Intended audience 1.2
The document is mainly intended for developers, architects, manufacturers, security engineers, and all the 

project participants and partners interested to have an overview of how the InteropEHRate supports 

encryption/decryption mechanisms for data storage and data exchange. 
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 Structure of the document  1.3
This deliverable is structured as follows: 

● Section 1 (the current section) introduces the overall concept of the document, defining its scope, 

intended audience, and relation to the other project tasks and reports. 

● Section 2 describes and reviews the research background regarding encryption mechanisms for 

both data storage and data exchange including aspects regarding confidential computing.  

● Section 3 introduces the overall encryption/decryption mechanisms in terms of InteropEHRate, 

where it is analysed in detail for both data storage and data exchange for all the InteropEHRate 

protocols. This section includes the security models for all the security protocols to highlight the 

used crypto-primitives. 

● Section 4 concludes the deliverable and highlights the most important aspects of the 

encryption/decryption algorithms used. 

● Appendix A summarises all the cryptographic notations used for a better understanding of the 

modelling of protocols  and the JSON schemas for D2D requests. 

 Updates with respect to previous version (if any) 1.4
Several updates have been made with respect to the previous version. The most important are: 

● Background extended with the PKI and the concept of hierarchy of trust among CAs for cross-

border trust establishment. 

● A summary and table with all the technologies adopted in InteropEHRate is also included as a sub-

section. 

● Description of all the security models and crypto-primitives regarding data encryption mechanisms 

per protocol is included and described in the deliverable. 

● The structure of Chapter 3 is completely restructured based on the InteropEHRate protocols for a 

clearer presentation. In addition, all the security protocols are analyzed in comparison with the 

previous version of the deliverable. 

● Specification has been updated with the inclusion of Diffie-Hellman (DH) key agreement APIs, the 

inclusion of RDS protocol and a clear distinction between the R2D-based protocols namely R2D 

Access, R2D Backup and R2D Emergency.  

● Specification was updated by removing the CP-ABE application level encryption for the R2D 

Emergency protocol for simplicity. 

● Conclusion section was updated, while no next steps have been  included since this is the final 

version of the deliverable. 

● An appendix with all the cryptographic notations of the security models included in the deliverable 

and the JSON schemas for D2D requests.   
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 TECHNICAL BACKGROUND 2
This chapter includes the necessary background and terminology for the encryption mechanisms, starting 

from the cryptography basics, the state-of-the-art solutions for both data storage and data exchange and a 

detailed literature review on the challenging aspect of cloud data storage. In addition, the concept of 

confidential computing is also highlighted, while the most known commercial TEE technologies are 

compared. 

 Cryptography 2.1
Cryptography is one of the most used techniques to build security and is an indispensable tool for 

protecting information in computer systems [Ghulam2018]. Cryptography is used to store and transfer data 

in such a form that only the sender and the receiver can understand or process it. In addition, cryptography 

depends upon both the algorithm and the key. There are two main types of Cryptography: Symmetric key 

cryptography and Asymmetric cryptography. 

Symmetric Key Cryptography: In symmetric key cryptography, a shared secret key is used between the 

sender and recipient in order to encrypt and decrypt the data. There are many algorithms that are based on 

symmetric key cryptography, like Caesar cipher, Block cipher, Stream cipher, DES (Data Encryption 

Standard), and AES (Advanced Encryption Standard). The main disadvantage of using symmetric key 

cryptography is the need to exchange the secret key between the sender and the receiver in a secure 

manner. In addition, symmetric algorithms such as the AES demand only a small amount of computational 

power [Lisonek2008]. 

Asymmetric Key Cryptography:  In asymmetric key cryptography, also called public key cryptography, two 

different keys are used for encryption and decryption. These two keys are known as a public key and 

private key, where one the former is used for encryption and the latter is used for decryption. The private 

key is a secret key, private key never exposed. There are many algorithms that are based on asymmetric 

key cryptography, like Diffie-Hellman, RSA (Rivest - Shamir - Adleman) and Elliptic Curve Cryptography 

(ECC). This method of encrypting data eliminates the need for the existence of a unique shared key 

between the communicating partners, but requires more computational power to perform manipulations 

on the data in comparison to symmetric cryptographic techniques [Lisonek2008].  

Identity-based encryption: The identity-based encryption is a type of asymmetric key encryption in which a 

user's public key is a string (can be a user's identity or mail address) combined with a public master key. 

User obtains his private key from the Private Key Generator (PKG) [BF03]. 

Attribute-based encryption: Attribute-based encryption (ABE) is a recent promising cryptographic method 

proposed by Sahai and Waters in 2005 [SW05]. The ABE technique extends identity-based encryption (IBE) 

to enable expressive access policies and fine-grained access to encrypted data. In both schemes IBE and 

ABE, cryptographic keys are managed by a Trusted Third Party (TTP), usually called Attribute Authority (AA). 

In ABE, data is encrypted along with an access structure which is the logical expression of the access policy. 

The encrypted data can be decrypted by any user if his secret key has attributes that satisfy the access 

policy. The power of ABE is that we do not need to rely on the storage server to avoid unauthorized data 

access since the access policy is embedded in the ciphertext itself [Lounis2014]. The two main variants of 

ABE are the Key-Policy Attribute-Based Encryption (KP-ABE) [GPSW06] and the Ciphertext Policy Attribute-

Based Encryption (CP-ABE) [BSW07].  
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Public Key Infrastructure (PKI) is the set of hardware, software, policies, processes, and procedures 

required to create, manage, distribute, use, store, and revoke digital certificates and public-keys [PKI]. The 

foundation for Public Key Infrastructure (PKI) is public key cryptography.  The PKI is required to deliver the 

public keys to existing systems or users securely. The public key is exchanged digitally in the form of digital 

certificates having a certain period of validity. The most known standard defining the format of a certificate 

is the X.509, while the entity that issues a digital certificate is the Certificate Authority (CA). In the 

literature, five PKI trust models are mainly used: the hierarchical trust model, the mesh trust model, the 

bridge CA trust model, the hybrid trust model, and the trust list trust model [Uahhabi2014]. More 

information regarding each PKI trust model can be found in [Uahhabi2014]. 

 Encryption for Data in Transit 2.2
Security is one of the main challenges when it comes to eHealth services and is a crucial requirement for 

the transmission of required health data across the network. Data in transit is vulnerable to interception 

and potentially redirection attacks. InteropEHRate deals with five protocols namely D2D, R2D Access, R2D 

Backup, R2D Emergency and RDS. D2D is over Bluetooth without Internet usage, while R2D Access, R2D 

Backup, R2D Emergency and RDS are over the Internet. This section will provide a brief overview of the 

encryption mechanisms used. In the context of InteropEHRate it’s assumed that common best practices, 

such as HTTPS (Hypertext Transfer Protocol Secure), are enabled, but will also be provided as an extra 

security layer at the application level encryption. 

2.2.1 Data exchange over Bluetooth 

Bluetooth devices are used to exchange encrypted data over an encrypted link with the use of a “link key”. 

The creation of that key depends on the pairing methods [Lecroy]. These pairing methods help the users to 

decide whether they exchange no key at all, or if they want to use a 6-digit (randomly or not) generated 

passcode which is used to authenticate the users [Loveless2018] [Ravikiran]. In addition, if the devices 

have enabled out-of-band communication channels, then all the needed information and the key will be 

exchanged out of the Bluetooth band. If two devices want to share information, for instance a file, then 

they have to (i) first, exchange device information to establish a secure connection and (ii) through the use 

of the common key, which they agreed to, encrypt the connection. After the establishment of the secure 

channel, they can securely exchange their data [bon2016] [Ravikiran]. 

Prior to Bluetooth version 2.1, pairing was not secure at all [Lecroy]. A passive eavesdropper was able to 

crack the user’s PIN and then compute the traffic key. Since Bluetooth v2.1 Secure Simple Pairing is used, 

which uses Elliptic Curve Diffie-Hellman (ECDH) for establishment of the session keys. In this way, a passive 

eavesdropper is prevented from obtaining the traffic keys. Version 4.0 established Bluetooth Low Energy 

(BLE), which approached the traffic encryption using the AES algorithm. But even though the encryption is 

better, the lack of use of ECDH made the encryption keys vulnerable to passive eavesdroppers 

[Corella2015]. In the context of InteropEHRate, the latest AES encryption for Bluetooth will be used, apart 

from the application level encryption. 

2.2.2 Data exchange over the Internet 

Traditionally, a secure socket layer (SSL) is used to establish secure communications. However, the IETF 

deprecated SSL in 2015, with Transport Layer Security (TLS) 1.0 supplanting SSL 3.1, but the ‘SSL’ tag has 

stuck, often representing both standards. A website that has implemented these cryptographic protocols is 

marked Secure HTTPS (HTTP within SSL/TLS), which should be table stakes for any mobile app. 
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HTTPS is an extension of the Hypertext Transfer Protocol and the letter “S” is referred to as Security. HTTPS 

is used to establish secure communication over a computer network [Sullivan2018]. Clients and servers can 

communicate the same way as they did by using HTTP, but in this case, they communicate over a secure 

SSL or TLS connection, which encrypts and decrypts the messages that both client and server exchange. As 

HTTPS is the secure version of HTTP, it adds encryption in HTTP in order to increase the security of the data 

being transferred. In practice, this provides an assurance that no one can possibly alter the communications 

between two parties [Kothari2019]. 

Transport Layer Security (TLS) is a widely used security protocol, which protects the data that is transmitted 

online, between a web browser and a website through HTTPS. TLS also provides confidentiality and data 

integrity through encryption and it ensures that the other party in a connection is who he says that he is 

[Lake2019]. By using both symmetric and asymmetric encryption a secure connection is established and so 

the data are transmitted between client and server. The client and the server should agree to the 

algorithms that they will use for both symmetric and asymmetric encryption. Negotiation for the 

agreement on the utilised algorithms is handled internally by the protocol. The most frequent algorithm for 

symmetric encryption is the Advanced Encryption Standard (AES) and for asymmetric encryption is Diffie-

Hellman [Prodromou2019]. 

 Encryption for Data in Storage 2.3
An end user device is a personal computer (desktop or laptop), a consumer device (e.g., personal digital 

assistant, smart phone), or a removable storage media (e.g., USB flash drive, memory card, external hard 

drive, writable CD or DVD) that can store information. Storage security is the process of allowing only 

authorized parties to access and use stored information [nist800-111]. Data at rest is extremely vulnerable, 

and thus, in the context of InteropEHRate we will focus on mobile, desktop and cloud data storage since 

they are the main involved devices in the InteropEHRate architecture. According to [nist800-111] the 

common types of storage encryption are:  

● Full Disk Encryption (FDE) - For a computer that is not booted, all the information encrypted by FDE 

is protected, assuming that pre-boot authentication is required. When the device is booted, then 

FDE provides no protection; once the OS is loaded, the OS becomes fully responsible for protecting 

the unencrypted information. FDE can be achieved with a Trusted Platform Module (TPM). 

● Virtual Disk and Volume Encryption - When virtual disk encryption is employed, the contents of 

containers are protected until the user is authenticated. If single sign-on is being used for 

authentication to the solution, this usually means that the containers are protected until the user 

logs onto the device. If single sign-on is not being used, then protection is typically provided until 

the user explicitly authenticates to a container. 

● File/Folder Encryption - File/folder encryption protects the contents of encrypted files (including 

files in encrypted folders) until the user is authenticated for the files or folders. If single sign-on is 

being used, this usually means that the files are only protected until the user logs onto the device. 

If single sign-on is not being used, then protection is typically provided until the user explicitly 

authenticates to a file or folder. 

2.3.1 Mobile Data Storage 

This section describes the storage encryption techniques that are used in both known mobile devices 

Android and iOS. In order to provide confidentiality, medical data must be encrypted before it is stored on 
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the mobile phone or any other device. As aforementioned, symmetric encryption enables the data to be 

securely stored in an efficient manner. 

● Android Data Storage - Android supports two major categories for storage encryption: full-disk 

encryption (FDE) and file-based encryption (FBE). In Android versions 5.0 up to 9.0 FDE is supported 

and is enabled by default with the use of Advanced Encryption Standard (AES) algorithm 

[androidd2020]. For Android version 7.0 or later, FBE is supported too. FBE has the ability to 

encrypt different files with different keys and hence each file can be decrypted independently 

[androidf2020]. FBE keys, which are 512-bit keys, are stored encrypted by another key (a 256-bit 

AES-GCM key) held in the Trusted Execution Environment (TEE) [androidf2020]. 

● iOS Data Storage - Apple automates by default the FBE encryption process of an iPhone from 

version 8 and above [kaspersky] with a 256-bit AES encryption [applesec]. The data stored on the 

phone is automatically encrypted through a unique identifier built into the device’s hardware. In 

addition, all personal data are encrypted by default whenever the phone is locked, and it is 

necessary for the user to have a passcode or Touch ID enabled (i.e. their fingerprint) in order to 

prevent unauthorized access to data [nield2020] [appledev]. 

2.3.2 Desktop Data Storage 

This section describes the storage encryption techniques that are used for both database and disk storage. 

The first subsection describes the technologies that are used for the encryption of data in databases, both 

Structured Query Language (SQL) and NoSQL, since both HCP Apps and Cloud services use databases to 

store their data, and the second describes disk encryption techniques. In the context of InteropEHRate, we 

assume that common best practices, such as full disk encryption are enabled, but we will also provide 

application level encryption. 

● Database Encryption - Structured Query Language (SQL) supports Transparent Data Encryption 

(TDE). TDE encrypts both the data and log files [microsoftder2019]. The encryption process is using 

either AES or Triple DES algorithm [microsofttde2019]. The process of encryption and decryption 

are real time and they are completely transparent to the applications that have access to these 

databases [microsoftder2019]. NoSQL databases, and specifically MongoDB, support data-in-

motion encryption and the data-at-rest encryption [Townsend]. For data-in-motion encryption, 

both Transport Layer Security (TLS) and Secure Socket Layer (SSL) protocols are supported. For 

data-at-rest encryption, an AES 256-bit symmetric key encryption at the file level is used.  

● Full-Disk Encryption - FDE is encryption at the hardware level, where the data is automatically 

written in encrypted form. When it is read, it is automatically decrypted. However, such an 

approach has the disadvantage of additional time overhead for accessing data. 

2.3.3 Cloud Data Storage and Break-glass Encryption 

Three types of cryptography are commonly used to secure EHRs: a) symmetric key cryptography, b) public 

key cryptography, and c) attribute-based encryption [Madnani2013]. “Break-glass” is a term used in IT 

healthcare systems in order to denote an emergency access to private information without having the 

credentials to do so [Scafuro2019]. Several works in the literature deal with the concept of break-glass 

encryption for cloud storage [Scafuro2019] [Oliveira2020]. Cloud services emerge as a promising solution 

to this problem by allowing ubiquitous access to information. However, Electronic Medical Records (EMR) 

storage and sharing through clouds raise several concerns about security and privacy.  



InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2 

 

 
7  

 

Several studies propose to send the EMR to a cloud service provider, where it is stored and encrypted with 

an encryption key known by the cloud provider [Abbas2014]. However, this approach does not protect the 

medical data against internal attacks [Abbas2014]. The storage of sensitive data over the cloud requires 

cryptography techniques in order to keep data confidential and preserve patients' privacy. Moreover, 

various solutions, based on symmetric or public cryptography, have been proposed to provide 

cryptographic access controls that allow storage and sharing of data on untrusted servers [KRS+03] 

[GSMB03] [BCHL09] [dVFJ+07] [WLOB09]. However, these techniques do not support fine grained access 

control required by medical applications and are not scalable with the number of users and introduce high 

complexity in key distribution and management.  

The work in [Li2010] proposes a unique authority to authenticate the medical staff to access the data. 

Other research works suggest encrypting the EMR with a secret key before storing it in the cloud 

[Zhang2010] [Mashima2012]. However, this means that the secret key needs to be pre-shared with all the 

legitimate users that need to access the EMR throughout the treatment, while in case of revoking the 

treatment process, the EMR must be re-encrypted with a new key and re-distributed to the legitimate users 

making the whole process not efficient [Oliveira2020]. Moreover, several works attempt to address access 

control of encrypted data by using secret sharing schemes combined with identity-based encryption 

[Benaloh1988] [Brickell1989]. However, such schemes do not address resistance to collusion attacks. A 

break-glass solution based on a password-based encryption and a master secret key-based encryption 

proposed in [Zhang2016]. The work in [Scafuro2019] proposed a solution where the security of the 

ciphertexts stored on a cloud can be violated exactly once, in a way that is detectable and without relying 

on a trusted third party, in case of secret keys lost.  

Another approach is to use attribute-based encryption (ABE) techniques to control access to patients’ data. 

In [6] [Brucker2010], the authors present an ABE-based break-glass access control. However, their solution 

does not enable revoking access after it is granted [Oliveira2020]. The authors in [Li2013] propose a 

patient-centric framework and a suite of mechanisms for data access control to PHRs stored in semi-trusted 

servers based on attribute-based encryption (ABE) techniques to encrypt each patient’s PHR file. Their work 

also enables dynamic modification of access policies or file attributes, supports efficient on-demand 

user/attribute revocation and break-glass access under emergency scenarios.  

Several works leverage techniques, such as Role Based Access Control (RBAC) and Attribute Based 

Encryption (ABE), to provide fine-grained access control required by personal medical systems. In research 

work [IAP09], applied Ciphertext Policy ABE (CP-ABE) is used to enable patients to securely store and share 

their health record on external third-party servers. In [LYRL10], authors proposed a novel practical 

framework for fine-grained data access control to medical data in Cloud. To avoid high key management 

complexity and overhead, they organized the system into multiple security domains where each domain 

manages a subset of users [Lounis2014]. The work in [Yang2019] presents a self-adaptive access control 

scheme for healthcare by combining attribute-based encryption (ABE) and a password-based break-glass 

key, which is pre-set by the patient. A contact holds this key for emergency situations when break-glass 

access has to be activated. More recently, the work in [Oliveira2020] proposes the usage of  the ciphertext-

policy ABE (CP-ABE) associated with policies defined for emergency situations, based on the research 

[Bethencourt2007], as well as the usage of an authentication token  to grant and revoke access dynamically 

without the need to re-encrypt the patient EMR. In the context of InteropEHRate, we will combine 

symmetric key encryption for medical data and CP-ABE for symmetric key encryption. 
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 Confidential Computing 2.3.3.1

Public cloud systems are the de facto platform of choice to deploy online services. As a matter of fact, all 

the major IT players provide some form of “infrastructure-as-a-service” (IaaS) commercial offerings, 

including Microsoft, Google and Amazon [Göttel2019]. IaaS infrastructures allow customers to reserve and 

use (virtual) resources to deploy their own services and data. These resources are eventually allocated in 

the form of virtual machines, containers or bare metal instances over the cloud provider’s hardware 

infrastructure [Göttel2019]. However, privacy concerns have greatly limited the deployment of systems 

over public clouds. The recent introduction of new hardware-assisted memory protection mechanisms 

inside x86 processors  paves the way to overcome the limitations [Göttel2019]. 

Confidential computing refers to performing computations with additional data confidentiality and integrity 

guarantees. TEEs have recently emerged as one of the most flexible and mature technologies, which can 

enable confidential computing. Many of today’s leading technology companies are actively developing and 

promoting confidential computing technologies [CCC2020]. Different TEE implementations vary in terms of 

features. The two most well-known TEE technologies are Intel SGX and AMD SEV.  

● The Intel Software Guard Extension (SGX) [Pires2019] is primarily conceived for shielding micro-

services, so that the trusted code base would be minimised. Automatic memory encryption and 

integrity protection are performed by hardware over a reserved memory area fixed at booting 

time, defined in the basic input/output system (BIOS) and limited to 128MiB (usable 93.5MiB). 

Whatever is kept in this area is automatically encrypted and integrity checked by hardware. The 

trust boundary is the CPU package, which holds hardware keys upon which attestation and sealing 

services are built. Applications are partitioned into trusted and untrusted parts, while the OS is 

considered untrusted.  

● AMD secure encrypted virtualisation (SEV) [Pires2019] provides automatic inline encryption and 

decryption of memory traffic, granting confidentiality for data in use by virtual machines. 

Cryptographic operations are performed by hardware and are transparent to applications, which 

do not need to be modified. Keys are generated at boot time and secured in a coprocessor 

integrated into the System on Chip (SoC). It was conceived for cloud scenarios, where guest VMs 

might not trust the hypervisor. Apart from including the whole guest OS in the trusted code base, it 

does not provide memory integrity and freshness guarantees as Intel SGX. 

In general, Intel SGX focuses on micro services, while AMD SEV is designed for cloud. AMD SEV offers better 

performance for intensive workloads and is transparent to the software running in an SEV-enabled VM. 

Both Microsoft and Amazon offer confidential computing based on Intel SGX, while Google very recently 

announced such a feature based on the AMD SEV [Google2020]. Table 1 below summarizes these two 

known TEE technologies used for confidential computing [Pires2019]. 

Commercial TEE Technologies Intel SGX AMD SEV 

Public Cloud provider 
announcements 

Microsoft Azure Confidential 
Computing (2018) & Amazon AWS 

Nitro Enclaves (2019) 

Google Confidential Virtual Machines 
(2020) 

Released 2015 2016 
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Target devices Client PCs Servers 

Running mode User-level Hypervisor 

Executes arbitrary code Yes yes 

Secret hardware key Yes yes 

Attestation and Sealing Yes yes 

Memory encryption Yes yes 

Memory integrity Yes no 

Resilient to wiretap Yes yes 

I/O from TEE No no 

TEE usable memory limit 93.5MiB system RAM 

Trusted Computing Base Trusted app partition Entire VMs 

Table 1 - Comparison of TEEs [Pires2019] 

 

 InteropEHRate Technologies 2.4
This section is in alignment with [D3.1] summarises the technologies used for encryption for both data at 

rest and data in transit. As already referred to [D3.1] Data-at-rest SHOULD be symmetrically encrypted 

using a military-grade NIST-compliant algorithm (e.g. AES with 256bit key) and the symmetric Key SHOULD 

be stored and retrieved by a local Keystore. In addition, encryption in transit SHALL be used with both 

secure-key-exchange (e.g. Diffie-Hellman key exchange) and strong network-level encryption. Table 2 below 

summarises the aforementioned used security enablers.  

 

 

 Data in Storage Data in Transit 

D2D S-EHR App: 
Symmetric Encryption / Database 

Encryption 

Diffie-Hellman Key Agreement / 
Symmetric Encryption 

R2DAccess S-EHR App: 
Symmetric Encryption / Database 

Encryption 

TLSv1.21 

                                                           
1
 https://datatracker.ietf.org/doc/html/rfc5246  

https://datatracker.ietf.org/doc/html/rfc5246
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R2D Backup S-EHR Cloud: 
Symmetric Encryption / File/Folder 

Encryption 

Symmetric Encryption 

R2D Emergency S-EHR Cloud: 
Symmetric Encryption / File/Folder 

Encryption 

Symmetric Encryption 

RDS S-EHR App: 
Symmetric Encryption / Database 

Encryption 

Diffie-Hellman Key Agreement / 
Symmetric Encryption 

Table 2 - InteropEHRate technologies 
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 INTEROPEHRATE SPECIFICATION OF ENCRYPTION MECHANISMS 3
The purpose of this section is to show how the InteropEHRate project will handle encryption/decryption 

mechanisms for data storage and data exchange in the context of InteropEHRate protocols and use cases. 

The following subsections include crypto models for data encryption mechanisms for all communication 

channels and involved applications. An overview of how the different actors and organizations involved in 

the InteropEHRate architecture in [D2.6] interact with each other in the context of the encryption 

mechanisms depicted in  Figure 1. More specifically, in the context of interoperate data data-at-rest should 

be symmetrically encrypted using a military-grade NIST-compliant algorithm (e.g. AES with 256bit key), 

while the symmetric-encryption key (that is used for data-at-rest) should be stored and retrieved by a local 

KeyStore (password-protected or biometric protected). In addition, apart from application-level encryption, 

transport-level encryption shall be used such as TLS v1.2 which incorporates both secure-key-exchange and 

strong network-level encryption (e.g. Diffie-Hellman key exchange and RSA-based encryption). 

InteropEHRate architecture involves the following communication protocols: the device-to-device (D2D), 

the remote-to-device Access (R2D Access), the remote-to-research Access (R2R-Access) which is similar to 

R2D Access as an optional extension of the RDS protocol, the remote-to-device Backup (R2D Backup), the 

remote-to-device Emergency (R2D Emergency) and the research data sharing (RDS). In the context of R2D 

Access, R2D Backup, R2D Emergency, R2R Access and RDS Research, TLS 1.2 should be enabled for 

encrypted communication.  In the context of D2D, the AES Bluetooth encryption should be enabled. In 

addition, application level symmetric encryption will be used in cases where the TLS 1.2 and Bluetooth 

encryption are missing or not enabled. This deliverable will focus on application level encryption 

specifications. The following sections describe the specified APIs for the data encryption mechanisms. In 

addition, from the Figure 1 below, we can have an overview all the different communication channels and 

the involved applications where sensitive medical data are transferred and stored.  

 

Figure 1 – InteropEHRate protocols 
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 D2D Security Architecture and Models 3.1
The D2D protocol defines the set of operations that allow the exchange of health data between a S-EHR 

app and an HCP app in short-range distance over Bluetooth, without the usage of Internet connection 

[D4.3]. This section describes the security models in the context of D2D. Prior to any security operation, the 

bootstrap phase will take place in order for all the participants in the protocol to agree on the necessary 

elements and acquire the needed Certificates as the necessary step to all the Public Key Infrastructure (PKI) 

frameworks. This prerequisite phase applies to all scenarios if certificates are missing and an Internet 

connection is necessary. These steps will be described in the current section and will not be described again 

in the rest of the scenarios since they are the same. In addition, section 3.11 below summarises all the 

security common APIs including the interaction with the CA in order to retrieve the necessary certificates, 

certificate chain and validate a certificate.  

Even though the interfaces are not depicted in the security models we refer to them for easier reference on 

the architecture of the reader. The name of the interface that is offered to the HCP app regarding the D2D 

protocol is named D2D. This interface contains the operations for letting the HCP app to perform tasks 

related to the S-EHR app, by invoking these operations, while the D2DServerSecurity and the 

D2DClientSecurity interfaces contain the operations for letting the HCP app and the S-EHR app establish a 

secure Bluetooth Connection [D2.6]. Both APIs will be used by the S-EHR and HCP app to agree on a shared 

secret key for the encrypted communication. The reader can also refer to Figure 13 of [D4.3]. 

In the D2D protocol, we have two principals, the 𝑆 − 𝐸𝐻𝑅 𝐴𝑝𝑝 and the 𝐻𝐶𝑃 𝐴𝑝𝑝, that agree publicly on an 

element 𝑔 that generates a multiplicative group 𝐺. The group 𝐺 is a subgroup of𝑍𝑝
∗  of prime order 𝑞, 𝑝 is a 

large prime and 𝑔is a generator of the group 𝑍𝑝
∗  of order 𝑚. Typical sizes in use today are 1024 bits for the 

length of 𝑝 and 160 bits for the length of 𝑞. The two principals select random values, 𝑟𝐴 and 𝑟𝐵 respectively, 

in the range between 1 and the order of 𝐺. 𝑆 − 𝐸𝐻𝑅 𝐴𝑝𝑝 calculates 𝑡𝐴 = 𝑔𝑟𝐴and 𝐻𝐶𝑃 𝐴𝑝𝑝 calculates 

𝑡𝐵 = 𝑔𝑟𝐵  and they exchange these values (public keys) as included in the corresponding Certificates. In 

order to generate the Certificates, both parties share their public keys to the CA, in order to issue the 

Certificates (i.e. 𝐶𝐴, 𝐶𝐵). Each issued Certificate (in our case the X.509) contains information regarding the 

identity of each party, the corresponding public keys 𝑡 , while it is digitally signed by the CA’s Certificate 

(i.e.𝐶𝐶𝐴). Each party can verify the Certificate signature (when it is necessary) with the root CA’s Certificate. 

In this deliverable, we omit the steps of the identity and consent management that happen before the 

encryption mechanisms, since they are part of other specification deliverables ([D3.4] and [D3.8]), and we 

will focus only on the encryption/decryption aspects.  

The encryption (i.e. 𝐸𝑛𝑐 function) in the communication channel is performed with the symmetric key 

𝑍𝐴𝐵 . Each party can calculate the symmetric key with the private values, 𝑟𝐴 and 𝑟𝐵and the public values, 𝑡𝐵 

and 𝑡𝐴. It has to be noted here that 𝑡𝐵 is already contained in the Certificate of 𝐻𝐶𝑃 𝐴𝑝𝑝 and hence the 

𝑆 − 𝐸𝐻𝑅 𝐴𝑝𝑝 has access and 𝑡𝐴is already contained in the Certificate of 𝑆 − 𝐸𝐻𝑅 𝐴𝑝𝑝 and hence 

𝐻𝐶𝑃 𝐴𝑝𝑝has access. More specifically, 𝑆 − 𝐸𝐻𝑅 𝐴𝑝𝑝 calculates 𝑍𝐴𝐵 = 𝑡𝐵
𝑟𝐴 and  𝐻𝐶𝑃 𝐴𝑝𝑝 calculates 

𝑍𝐴𝐵 = 𝑡𝐴
𝑟𝐵 .This is the last step of the well known Diffie Hellman key agreement protocol. For storage each 

party encrypts/decrypts (i.e. 𝐸𝑛𝑐 and 𝐷𝑒𝑐 functions) the stored data with a newly generated symmetric key 

𝑍 𝐴and 𝑍 𝐵respectively from a Key Derivation Function (KDF) for a high-entropy key. In other words, the 

shared secret for encrypted communication is 𝑍𝐴𝐵 = 𝑔𝑟𝐴𝑟𝐵 . This value can be calculated as described 

earlier by both 𝑆 − 𝐸𝐻𝑅 𝐴𝑝𝑝 and 𝐻𝐶𝑃 𝐴𝑝𝑝 due to the homomorphic property of exponentiation: 

𝑍𝐴𝐵 = 𝑡𝐴
𝑟𝐵 = 𝑡𝐵

𝑟𝐴 . Figure 2 below depicts the described crypto model. 
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Figure 2 – D2D crypto-model 

The conceptual sequence diagram that provides a high-level overview of the D2D is depicted in Figure 3, 

where the Diffie-Hellman key agreement protocol is hidden behind the exchanged steps. Following a 

detailed description of the sequence diagram of D2D to achieve encrypted communication:  

 

● Step 1: This step is part of the Diffie-Hellman key agreement protocol. More specifically, the HCP 

app is the initiator of the protocol to agree both the HCP and the S-EHR in secret keys for 

symmetric key encryption/decryption. The step demonstrates the transfer of the HCP’s public part 

of the agreement. 

● Step 2: This step is part of the Diffie-Hellman key agreement protocol. The step demonstrates the 

transfer of the S-EHR’s app public part of the agreement. After this step both parties calculate and 
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agree on a common symmetric key and hence are able to encrypt/decrypt the communication 

channel. 

 

 
Figure 3 – D2D sequence diagram 

 

 D2D Security APIs 3.2
This section includes the security APIs for the secure communication in the D2D protocol. The HCP Web 

App initiates the procedure of the Diffie-Hellman key agreement, while both the S-EHR App and HCP Web 

App provide the functionalities of symmetric encryption and decryption for the D2D protocol. 

 

3.2.1 S-EHR App Security APIs 

Operation HCPPublicKey 

Name HCPPublicKey 

Description HCP sends his/her public key to the S-EHR App. 

Arguments ● String publicKey 

Return Value ● void 

Exceptions ● Exception 

Preconditions ● Successful acquisition of public key 

 

 

3.2.2 HCP App Security APIs 

Operation citizenPublicKey 

Name citizenPublicKey 

Description S-EHR app sends his/her public key to the HCP. 
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Arguments ● String publicKey 

Return Value ● void 

Exceptions ● Exception 

Preconditions ● Successful acquisition of public key 

 

 R2D Access Security Architecture and Models 3.3
The R2D Access protocol is used for importing health records stored within an EHR of a healthcare 

organization to a smart mobile device [D4.3]. As already written, prior to any security operation a 

bootstrap phase is necessary in order for all the participants in the protocol to acquire the necessary 

elements. Regarding R2D Access, all the involved parties should have acquired the necessary Certificates 

from the CA, including the Certificates of the eIDAS Node 𝐶𝐸, the Certificate of the S-EHR App 𝐶𝐴and the 

Certificate of the Healthcare EHR 𝐶𝐿. Each certificate is associated with a private and a public key. For 

instance, in the S-EHR app with the private 𝑃𝑟𝐴and the public 𝑃𝑢𝑏𝐴. eIDAS defines citizens as persons and 

organisations that seek online services from any EU member state using their domestic eID with assured 

security, cost- and time-efficiencies, and usability [KENNEDY2016]. The proprietary national input is 

mapped and conditioned through the eIDAS Node in Country-A to an interoperable transport form, the 

eIDAS SAML Assertion. Such assertions can be requested during an authentication request by a Service 

Provider (SP) through an eIDAS Connector in Country-B [ESENS2017]. More details regarding eIDAS and 

eIDAS-based identification are provided in [D3.4]. 

 

Both the Certificates  and a successful eIDAS-based authentication must be retrieved in order to achieve all 

the necessary crypto operations. In section 3.1 above is explained how the Certificates acquired from a CA, 

while the detailed eIDAS authentication steps are included in [D4.3]. After a successful cross-border 

authentication with the eIDAS infrastructure an authentication token with a certain validity period is stored 

in the mobile for future usage. Figure 4 depicts the R2D Access crypto-model for data encryption 

mechanism. After successful authentication with the utilisation of the eIDAS Infrastructure, and a TLS 

handshake for key agreement, the encrypted communication is achieved symmetrically using the HTTPS 

protocol. The symmetric key established form the TLS handshake is depicted as 𝑍𝐴𝐵and the symmetric key 

used for data storage is depicted as 𝑍𝐴. The latter is generated with a KDF function in the S-EHR app to 

achieve high entropy. Since encryption will be used at a network layer, no security APIs and sequence 

diagram will be provided for the R2D Access encryption mechanisms.  
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Figure 4 – R2D Access crypto-model 

 

The TLS handshake2 is depicted in Figure 5 and involves a series of steps, which accomplish the three main 

tasks a) exchanging encryption capabilities, b) authenticating the certificate, and c) exchanging/generating 

a session key. Handshake is a necessary step prior to the encryption in order to agree on a set of keys for 

both parties. The handshake can currently use 5 different algorithms to do the key exchange: RSA, Diffie-

Hellman, Elliptic Curve Diffie-Hellman and the ephemeral versions of the last two algorithms. Following a 

detailed description of the TLS handshake steps:  

● Step 1: This step is called the “Client Hello” and lists the client’s capabilities so that the server can 

pick the cipher suite that the two will use to communicate. It also includes a large, randomly picked 

prime number called a client random or nonce. 

● Step 2: The server responds with a “Server Hello” message, where it tells the client what 

connection parameters it has selected from the provided list and returns its own randomly selected 

prime number called a server random or nonce. If the client and server do not share any 

capabilities in common, the connection terminated unsuccessfully. 

● Step 3: In the “Certificate” message, the Server sends its certificate chain to the client. To provide 

authentication to the connection certificate is signed by a CA, which allows the client to verify that 

the certificate is legitimate. Upon receipt, the client checks the certificate’s digital signature, 

                                                           
2
 https://datatracker.ietf.org/doc/html/rfc524  

https://datatracker.ietf.org/doc/html/rfc524
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verifying the certificate chain, and any other potential problems with the certificate data (expired 

certificate, wrong domain name, etc).  

● Step 4: In this step, the “ServerHelloDone” message informs the client that it has sent over all its 

messages. 

● Step 5: The client then provides its contribution to the session key. The specifics of this step depend 

on the key exchange method that was decided on in the initial “Hello” messages.  

● Step 6: The “ChangeCipherSpec” message lets the other party know that it has generated the 

session key and is going to switch to encrypted communication. 

● Step 7: The “Finished” message is then sent to indicate that the handshake is complete on the 

client side. The Finished message is encrypted, and is the first data protected by the session key. 

The message contains the message authentication code (MAC) that allows each party to make sure 

the handshake was not tampered with. 

● Step 8: Server decrypts the pre-master secret and computes the session key. Then it sends its 

“Change Cipher Spec” message to indicate it is switching to encrypted communication. 

● Step 9: In the last step, the server sends its “Finished” message using the symmetric session key it 

just generated, it also performs the same check-sum to verify the integrity of the handshake. 
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Figure 5 – TLS handshake protocol 

 

 R2D Backup Security Architecture and Models 3.4
The R2D Backup protocol, as its name suggests, defines the set of operations that allow backup of 

encrypted health data that is stored in a S-EHR mobile app to a  S-EHR Cloud over the Internet [D4.3]. Prior 

to the encrypted communication and storage phase, a successful authentication of the S-EHR App to the S-

EHR Cloud is needed. In this scenario, a simple username/password authentication mechanism is 

performed that returns a JWT authentication token. More information regarding the authentication aspects 

will be provided in the [D3.4]. In the S-EHR Cloud symmetric encryption will be used for secure transport 

and storage. More specifically, S-EHR App encrypts the data for backup with AES 256 and uploads them to 

the cloud for storage, after a successful authentication. The symmetric key is added in a QR code, in order 

the HCP could access it for emergency cases. The R2D Backup scenario requires the involved parties to have 
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acquired the necessary Certificates from the CA  (i.e. 𝐶𝐴, 𝐶𝐶  ) for the necessary crypto operations. Figure 6 

depicts the R2D Backup crypto model. The S-EHR App decrypts the encrypted stored data (i.e.𝐷𝑒𝑐) with the 

key 𝑍𝐴, re-encrypts (i.e.𝐸𝑛𝑐) them with a different symmetric key generated from a KDF the 𝑍𝐴𝐶  and stores 

the data in the selected S-EHR Cloud. Last but not least, this new generated key will be added in the printed 

QR code (i.e. 𝑄𝑅(𝑍𝐴𝐶 , 𝜎𝛢(𝑍𝐴𝐶)) along with S-EHR App’s signature for emergency cases, where authorised 

HCPs can have access and download the encrypted data and based on the scanned QR code to decrypt 

them. 

 

 

Figure 6  – R2D Backup crypto-model 

The conceptual sequence diagram that provides a high-level overview R2D Backup  is presented in Figure 7. 

The S-EHR App generates a symmetric key and a QR-code that includes the symmetric key used to encrypt 

his/her medical data prior to backup to the S-EHR Cloud. Following a detailed description of the sequence 

diagram of R2D Backup encryption mechanism:  

● Step 1-2:  These steps demonstrate secure upload of the health records. The encryption of the 

health records, registration and secure upload are performed on the selected S-EHR cloud by 

providing the encrypted data and the JWT token.  

● Step 3-4: These steps demonstrate secure download of the health records. After the download of 

the health records decryption with the same symmetric key is needed to access the health records.  
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Figure 7 – R2D Backup sequence diagram 

 

 R2D Backup Security APIs 3.5
This section includes the security APIs for the encryption mechanism in the R2D Backup protocol. The S-EHR 

App provides the functionality of symmetric encryption for data in transit and in storage. 

3.5.1 S-EHR Cloud Security APIs 

 

Operation create 

Name Create 

Description This API is invoked by the S-EHR app to register and encrypted upload his/her 
health records. The citizen encrypts a health data resource on the S-EHR app 
and uploads it on the S-EHR cloud. This is a POST request to  
http://[baseurl]/citizen/upload?objectName={$ResourceCategory} 

Arguments ● String encryptedHelathRecord: the encrypted payload. 
● String token: the JWT authorization token 

 
Header: 
“Authorization”: Authentication token - JSON Web token 
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Return Value ● Acknowledgement: String 
 
HTTP Return Codes: 
200 Successful: request was successfully processed. 
400 Bad request: request could not be processed. 
404 Not Found: User with that username is not found. 
500 Internal Server Error: server encountered an unexpected internal error, the 
request could not be processed. 

Exceptions ● Exception 

Preconditions ● Successful JWT authorization 
● Symmetric key agreement established 
● Health Records are successfully encrypted 

 

Operation get 

Name Get 

Description This API is invoked by the S-EHR app to download his/her encrypted health 
records. The citizen downloads an encrypted health data resource from the S-
EHR cloud and decrypts it locally on the S-EHR app. This is a GET request to  
http://[baseurl]/citizen/{$bucketName}/{$objectName} 

Arguments ● String token: the JWT authorization token 
● String objectInfo: information related to the requested record 

 
Header: 
“Authorization”: Authentication token - JSON Web token 

Return Value ● Encrypted Health Data Resource: EncryptedBundle 
 
HTTP Return Codes: 
200 Successful: request was successfully processed. 
400 Bad request: request could not be processed. 
404 Not Found: User with that username is not found. 
500 Internal Server Error: server encountered an unexpected internal error, the 
request could not be processed. 

Exceptions ● Exception 

Preconditions ● Successful JWT authorization 

 R2D Emergency Architecture and Models 3.6
The R2D Emergency protocol defines the set of operations that allow authorized HCPs to access the 

encrypted health data that is backed up on a S-EHR Cloud of a citizen in need during an emergency 

situation over the Internet [D4.3]. In this protocol, only authorised HCPs are allowed to access a citizen’s 

health data. An Attribute Based Access Control (ABAC) mechanism will be utilised to make an access control 

decision based on the HCPs assigned attributes of the requester, the assigned attributes of the object (e.g. 
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health data), environment conditions (e.g. location, temperature etc.), and a set of policies that are 

specified in terms of those attributes and conditions. More details regarding the authorization phase are 

included in the [D3.8]. Figure 8 depicts the R2D Emergency crypto model. The HCP App will be able  to 

acquire the symmetric key 𝑍𝐴𝐶after scanning the QR code (generated in R2D Backup protocol - Section 3.5). 

Finally, the HCP App downloads the encrypted data and decrypt (i.e. 𝐷𝑒𝑐) them using the acquired 

symmetric key 𝑍𝐴𝐶 . 

 

Figure 8 – R2D Emergency crypto-model 

The conceptual sequence diagram that provides a high-level overview R2D Emergency  is presented in 

Figure 9. In cases of emergency the HCP scans the QR-code to retrieve the symmetric key and after 

successful authorization  to the cloud and downloads the encrypted data. Once the emergency occurs, the 

citizen is transferred to a healthcare facility. With the phone being unreachable the HCP that cures the 

citizen (from now on called patient), uses their HCP app to connect to the S-EHR Cloud service that the 

patient uses in order to access their health data. More details for the authorization aspects will be provided 

in [D3.8]. Following a detailed description of the sequence diagram of R2D Emergency encryption 

mechanism:  

● Step 1-2:  These steps demonstrate secure upload of the newly generated health records. The 

encryption of the health records and secure upload are performed with the symmetric key scanned 

from the QR.  
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● Step 3-4: These steps demonstrate secure download of the health records. After successful 

authorization and download of the encrypted data, the HCP can use the already scanned symmetric 

key to decrypt the data and get access to the needed patient’s medical data. 

  

 
Figure 9 – R2D Emergency sequence diagram 

 R2D Emergency Security APIs 3.7
This section includes the security APIs for the encryption mechanism in the R2D Emergency protocol. The 

HCP Web App provides the functionality of decryption for the encrypted data. 

3.7.1 S-EHR Cloud Security APIs 

Operation create 

Name create 

Description This API is invoked by the HCP app to upload newly generated health records. 
The HCP encrypts a health data resource on the HCP app and uploads it on the 
S-EHR cloud using the scanned symmetric key. This is a POST request to  
http://[base url]/hcp/upload?objectName={$ResourceCategory} 

Arguments ● HCP attributes: String 
● Encrypted health data resource: EncryptedBundle 
● Health data type: ResourceCategory 

 
Header: 
“Authorization”: Health care institution authentication token: JSON Web token 
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Return Value ● Acknowledgement: String 
 
HTTP Return Codes: 
200 Successful: request was successfully processed. 
400 Bad request: request could not be processed. 
404 Not Found: User with that username is not found. 
500 Internal Server Error: server encountered an unexpected internal error, the 
request could not be processed. 

Exceptions ● Missing header: Health care institution authentication token 
● Missing argument: HCP attributes 
● Missing argument: Encrypted health data resource 
● Missing argument: Metadata 

Preconditions ● Symmetric key agreement established 
● Health Records are successfully encrypted 
● The citizen should have agreed to share their health data with 

authorized HCPs during emergency situations. 

● The health care institution should have already been granted access. 

 

Operation get 

Name get 

Description This API is invoked by the HCP app to download citizen’s encrypted health 
records for emergency purposes. The authorized HCP downloads an encrypted 
health data resource from the S-EHR cloud and decrypts it locally on the HCP 
app. This is a GET request to  
http://[baseurl]/hcp/{$bucketName}/{$objectName} 

Arguments ● HCP attributes: String 
● Health data type: ResourceCategory 
● Bucket containing the object: String 

 
Header: 
“Authorization”: Health care institution authentication token: JSON Web token 

Return Value ● EncryptedBundle: The health data resource requested 
 
HTTP Return Codes: 
200 Successful: request was successfully processed. 
400 Bad request: request could not be processed. 
404 Not Found: User with that username is not found. 
500 Internal Server Error: server encountered an unexpected internal error, the 
request could not be processed. 

Exceptions ● Missing header: Health care institution authentication token 
● Missing argument: HCP attributes 
● Missing argument: Encrypted health data type 



InteropEHRate deliverable D3.6: Specification of data encryption mechanisms for mobile and web applications - V2 

 

 
25  

 

● Missing argument: Bucket name 

Preconditions ● The citizen should have agreed to share their health data with 
authorized HCPs during emergency situations. 

● The health care institution should have already been granted access. 

 

 RDS Security Architecture and Models 3.8
The RDS protocol specifies the technical means to citizens for the sharing of their health data for the 

purposes of cross-border medical research, in a cross-border interoperable manner [D4.9], while in some 

cases (e.g. data not able to be stored in the mobile) gives the ability to the research centers to download in 

a secure and anonymous manner. In terms of privacy preservation, two variants are used [D6.8], one 

standardized with the state-of-the-art crypto primitives for enriching privacy and one with the currently 

adopted mechanisms by the end-users. More specifically, the first variant is the pseudo-identity, which is 

generated at the RRC if the citizen gives his/her consent to participating in the study. The second variant is 

the pseudonym which is generated by the Pseudonym Provider and leverages an eIDAS-based architecture 

for cross-border identification/authentication to the PP. More information regarding these aspects will be 

provided in [D6.8] and [D3.4]. As already stated in [ENISA2021], there is no fit-for-all pseudonymisation 

technique and a detailed analysis of the case is necessary. The usage of the second variant does not 

enhance the applicability of the InteropEHRate framework but allows to perform a detailed investigation of 

new privacy-preserving enablers that can extend the state of the art and be potentially considered as a new 

standard. Pseudonymisation can go beyond hiding real identities and data minimisation into supporting the 

unlinkability [ENISA2021] making high entropy pseudonyms necessary.  

As aforementioned, the encrypted communication between the S-EHR app and RRC is achieved with AES 

symmetric encryption, after the successful Diffie-Helman key agreement, while the encrypted 

communication between the RRC and the HCP After is achieved via TLS using the HTTPS protocol, after 

successful authentication. This section describes the security models in the context of RDS for encrypted 

communication between the S-EHR app and the RRC. As with the previous protocols, S-EHR App and RRC  

already have access to the needed Certificates (𝐶𝐴, 𝐶𝐸 , 𝐶𝑅). On demand prior to the RDS protocol, S-EHR 

App and RRC run the Diffie-Hellman key agreement phase to establish a shared key 𝑍𝐴𝑅(the same used in 

Figure 2). One of the two 𝑝𝑖𝑑 (pseudo-id - variant 1) or 𝑝𝑠𝑒𝑢(pseudonym - variant 2) based on the variant 

will be used to anonymize the data (i.e. 𝐴𝑛- anonymous signing) and the encrypted (i.e. 𝐸𝑛𝑐) with the 

agreed key is transferred to the RRC. The RRC decrypts (i.e. 𝐷𝑒𝑐) with the same key the data, verifies the 

anonymous signature (currently this is not depicted for space reasons - the certificate is assumed that is 

sent along with the anonymised data) and retrieves the anonymised data for further process and survey. 
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Figure 10 – RDS crypto-model 

The conceptual sequence diagram that provides a high-level overview of RDS in Figure 11, where the 

encryption communication flow is depicted. Following a detailed description of the sequence diagram of 

RDS encryption mechanism:  

● Step 1: The step demonstrates the transfer of encrypted data from the S-EHR app to the RRC. The 

decryption process is taking place on the RRC side. 

 

 
Figure 11 – RDS sequence diagram 
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 RDS Security APIs 3.9
This section includes the security APIs for the encryption mechanism in the RDS protocol. The RRC initiates 

the procedure of the Diffie-Hellman key agreement, while the S-EHR App and RRC provide the 

functionalities of symmetric encryption and decryption for data in transit respectively. 

3.9.1 RRC Security APIs 

Operation  sendHealthData 

Name sendHealthData 

Description This API allows a S-EHR App to send encrypted citizen health data to a Research 
Centre. The  receiving RC verifies and decrypts the encrypted and signed 
payload healthData and retrieves the FHIR bundle contained within. This is a 
POST request to http://<BASE_ADDR>/sendHealthData?studyID=<studyID> 

Arguments URL params: 
studyID: the ID of the study in which the Citizen is enrolling; 
The POST body content is a JSON file defined as follows: 
{ 
 "citizen-pseudo": <citizen-pseudo>, 
 "health-data": <health-data> 
} 
where: 
<citizen-pseudo>: the study-specific pseudonym or pseudo-identity of the 
Citizen; 
<health-data>: a FHIR bundle containing the health data (resources, attributes, 
values) necessary for the study, in an encrypted form, as well as the responses 
to research questionnaire(s) provided by the Citizen if available 
 
 
Header: 
Content-Type: application/fhir+json 

Return Value HTTP return codes: 
200 Successful: request was successfully processed. 
400 Bad Request: search could not be processed or failed basic FHIR validation 
rules. 
401 Not Authorized: authorisation is required for the interaction that was 
attempted. 
403 Forbidden: client is not allowed to access requested resources due to 
security policy. 
404 Not Found: resource type not supported, or not a valid FHIR endpoint. 
406 Not Acceptable: client requested a not supported content-type format.  
500 Internal Server Error: server encountered an unexpected internal error, the 
request could not be processed. 

Exceptions The call’s exceptions returned are added as text messages within the HTTP 
response body which is defined as follows: 
{ 
    "timestamp":<timestamp>, 
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    "status":<http-status-code>, 
    "error":<code-description>, 
    "message":<exception message>, 
    "path":<request-path> 
} 
where: 

● <timestamp> : response timestamp; 
● <http-status-code> : one of the http codes listed in the previous row; 
● <code-description> : description of http code; 
● <request-path> : http request’s URL; 
● <exception message> : the following text message: 

○ invalid content (study ID, pseudo-identity, healthData) 

Preconditions ● The Citizen must have enrolled into the study previously. 
● The S-EHR App  must have access to the Citizen’s private key to encrypt 

the health data, and the called Research Centre must have access to the 
Citizen’s public key to be able to decrypt it. 

 Security Commons Architecture and Models  3.10
As already mentioned, prior to any security operation, the bootstrap phase will take place in order for all 

the participants in the protocol to agree on the necessary elements and acquire the needed X.509 

Certificates. This prerequisite phase applies to all the scenarios if certificates are missing and an Internet 

connection is necessary. This section describes the security commons for all the protocols and more 

specifically the interaction with the CA and the corresponding APIs. The Certificate Authority provides the 

services exposed through the Certificate Authority Interface (CAI) [EJBCA 2021], where CAI is a web service 

interface. In addition, since the eIDAS-based authentication will be adopted in the InteropEHRate project, a 

cooperation between these two services will benefit for a seamless Certificate generation based on the 

eIDAS acquired attributes of the eIDAS token 𝑒𝑖𝑑𝑡𝑘𝑛.   

The Root CA is always a self-signed certificate 𝐶 𝐶𝐴. The root certificate, often called a trusted root, is at 

the center of the trust model that undergirds PKI. Every device includes something called a root store. A 

root store is a collection of pre-downloaded root certificates (and their public keys) that live on the device 

itself. As already introduced in [D3.9], EJBCA offers a multipurpose PKI software that supports multiple CAs 

and levels of CAs to enable one to build a complete infrastructure (or several) for multiple use cases within 

one instance of the software. EJBCA enables multiple integration and automation possibilities and issues 

certificates to persons, infrastructure components and IoT (Internet of Things) devices. The high-level steps 

in order for an entity (e.g. the citizen, the healthcare professional etc.) to retrieve a certificate is the 

following: 

1. Entity (e.g. the citizen, the healthcare professional) generates a private/public key pair 𝑟𝐴/𝑡𝐴, 

keeping the private key secret. 

2. Entity crafts a certificate signing request (CSR) and submits it to the CA. CSR usually contains the 

public key 𝑡𝐴 for which the certificate should be issued, identifying information 

𝑒𝑖𝑑𝑡𝑘𝑛 𝑎𝑛𝑑 𝑎𝑡𝑡𝑟and integrity protection (e.g., a digital signature) 𝜎𝑟𝐴
. The most common format 

for CSRs is the PKCS #10 specification. The CSR may be accompanied by other credentials or proofs 

of identity required by the certificate authority. 
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3. If the request is successfully verified 𝑉𝑒𝑟, the CA issues a certificate  that has been digitally signed 

using the private key of the CA and records it in the CA’s database. 

4. Entity verifies 𝑉𝑒𝑟its own Certificate and presents the certificate to the another entity for 

identification purposes (e.g. S-EHR App to HCP App) 

5. The other entity presumably has the signing certification authority’s certificate or can get it if 

Internet connection is available. Then verifies𝑉𝑒𝑟 the validity of the Certificate. 

6. The other entity checks that the certificate does not appear on the Certificate Revocation List (CRL) 

if Internet connection is available. 

7. If 4, 5, and 6 all check out, the client will accept the certificate.  

In case of D2D steps that require Internet connection will happen later in time, when Internet will be 

available. The reasoning behind separating the eIDAS token (Certificate form eIDAS) from the CA Certificate 

attributes, is that the eIDAS token includes a predefined attributes list, however, in the context of R2D 

Emergency more attributes are needed for access control purposes (e.g. the hospital name and the role). 

The eIDAS token will be used for identification purposes to verify and validate the identity of the requestor 

and the additional attributes will be used as extra information for the CA's X.509 Certificate generation.  

 

Figure 12 – Security commons crypto-model 

The conceptual sequence diagram that provides a high-level overview of RDS in Figure 13, where common 

security flows are depicted. Following a detailed description of the sequence diagram:  

● Step 1:  An entity (e.g. S-EHR App, HCP App etc. ) request from the CA to issue a certificate.  In 

cases where the entity is an eIDAS registered, CA verifies the identity of the entity through the 

eIDAS infrastructure. 
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● Step 2: An entity (e.g. S-EHR App, HCP App etc. ) request from the CA to reissue a lost certificate.  In 

cases where the entity is an eIDAS register, CA verifies the identity of the entity through the eIDAS 

infrastructure. 

● Step 3: An entity (e.g. S-EHR App, HCP App etc. ) requests a certificate based on the alias and other 

optional attributes. 

● Step 4: An entity (e.g. S-EHR App, HCP App etc. ) checks the validity of a certificate. 

 

 

Figure 13 – Security commons sequence diagram 

 Security Commons APIs 3.11

Operation getUserCertificate 

Name getUserCertificate 

Description Retrieves a valid certificate generated for a user from the CA server. 

Arguments ● String alias: User alias (e.g. GRxavi) 
● String country (optional) 
● String username (optional) 

Return Value ● String Certificate data 

Exceptions ● Exception, in case of error. 

Preconditions ● CA server is available 
● An existing user and a server-generated keystore. 

Operation validateUserCertificate  

Name validateUserCertificate 

Description Checks if certificate is valid 

Arguments ● String certificateData 
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Return Value ● A boolean value, “true” meaning that the signature was successfully 
verified. 

Exceptions ● Exception, in case of error. 

Preconditions ●  CA server is available 

 

 

Operation CertificationWebViewActivity 

Name CertificationWebViewActivity 

Description This activity handles the redirection of the user to the eIDAS registration page 
hosted by the Trusted Proxy Server. The Trusted Proxy Server  is responsible for 
managing all the communication between the eIDAS infrastructure and the S-
EHR App. 

Arguments ● String register_url: the register url of the Trusted Proxy Server. The user 
is redirected to this url in order to add his/her eIDAS credentials 

Return Value ● String keystore: a keystore with eidas authentication 

Exceptions ● N/A 

Preconditions ●  Trusted Proxy Server is available 

 

Operation LostCertificateWebViewActivity 

Name LostCertificateWebViewActivity 

Description This activity handles the redirection of the user to the eIDAS lost certificate 
page 
hosted by the Trusted Proxy Server. The Trusted Proxy Server  is responsible for 
managing all the communication between the eIDAS infrastructure and the S-
EHR App. 

Arguments ● String lost_certificate_url: the lost certificate url of the Trusted Proxy 
Server. The user is redirected to this 
url in order to add his/her eIDAS credentials 

Return Value ● String keystore: a keystore with eidas authentication 

Exceptions ● N/A 

Preconditions ●  Trusted Proxy Server is available 
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 CONCLUSIONS 4
In this report, it’s defined the second and final version of the specification of data encryption mechanisms 

for mobile and web applications. A technical background with state-of-the-art encryption mechanisms and 

crypto primitives are also provided. More specifically, this deliverable includes the detailed crypto models 

and encryption/decryption aspects of all the involved architecture components (e.g., S-EHR App, HCP Web 

App, S-EHR Cloud, Central Node and Reference Research Center), protocols (e.g., D2D, R2D Access, R2D 

Backup, R2D Emergency, RDS), and scenarios (e.g., Medical Visit, Emergency and Research) for data at rest 

and in-transit. Last but not least, the deliverable includes the detailed crypto models for the security 

common for all scenarios functionalities (e.g. interaction with a CA for certificate generation). This final 

version of the deliverable acts as the detailed specification of encryption and decryption purposes defined 

in the context of InteropEHRate.   
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 APPENDIX A 5
This section summarises all the notions used in the design of the cryptographic libraries.  

 

Symbol Description 

𝐺 Multiplicative group 

𝑔 Generator 

𝑍𝑝
∗  Group 

𝑟   Random value 

𝑞, 𝑝 Large primes 

𝜎  Cryptographic signature 

𝑃𝑟  Private key 

𝐶  Certificate 

𝑉𝑒𝑟  Verify 

𝑁  Nonce 

𝑍  Symmetric key 

𝐸𝑛𝑐 Encryption 

𝐷𝑒𝑐 Decryption 

𝐴𝑢𝑡ℎ Authentication/Authorization 

𝑚 Health data 

𝑄𝑅 QR code 

𝑡𝑠𝑡𝑎𝑚𝑝 Timestamp 

𝑇𝐼𝐷 Transient identifier  - anonymous assertion 
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𝐿𝐼𝐷 Long-term identifier  - real id 

𝑝𝑖𝑑 Pseudo-id 

𝑃𝐺𝑒𝑛 Pseudonym generation based on group signatures 

𝑝𝑠𝑒𝑢 Pseudonym 

𝐴𝑛 Anonymized the data with anonymous signing 

𝐶𝑆𝑅 Certificate signing request 

𝑒𝑖𝑑𝑡𝑘𝑛 eIDAS token 

Table 3 - Notation used 

JSON-schema for the D2D Security Message 

The JSON-schema for the D2D requests is specified below: 

 

{ 
    "$id": "http://example.com/example.json", 
    "$schema": "http://json-schema.org/draft-07/schema", 
    "description": "The root schema of a D2DSecurityMessage", 
    "required": [ 
        "header", 
        "operation", 
        "body" 
    ], 
    "type": "object", 
    "properties": { 
        "header": { 
            "$id": "#/properties/header", 
            "type": "object", 
            "title": "The header schema", 
            "description": "An explanation about the purpose of this instance.", 
            "default": {}, 
            "examples": [ 
                { 
                    "timeStamp": "2021-07-26T14:13:13.553Z", 
                    "agent": "JRE 1.8.0_261 - Windows 10 10.0", 
                    "protocol": "D2D", 
                    "version": "1" 
                } 
            ], 
            "required": [ 
                "timeStamp", 
                "agent", 
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                "protocol", 
                "version" 
            ], 
            "properties": { 
                "timeStamp": { 
                    "$id": "#/properties/header/properties/timeStamp", 
                    "examples": [ 
                        "2021-07-26T14:13:13.553Z" 
                    ], 
                    "type": "string" 
                }, 
                "agent": { 
                    "$id": "#/properties/header/properties/agent", 
                    "description": "The agent that created the message", 
                    "examples": [ 
                        "JRE 1.8.0_261 - Windows 10 10.0" 
                    ], 
                    "type": "string" 
                }, 
                "protocol": { 
                    "$id": "#/properties/header/properties/protocol", 
                    "default": "D2D", 
                    "description": "The name of the used protocol.", 
                    "enum": [ 
                        "D2D" 
                    ], 
                    "type": "string" 
                }, 
                "version": { 
                    "$id": "#/properties/header/properties/version", 
                    "default": "1", 
                    "description": "version of the protocol used", 
                    "type": "string" 
                } 
            }, 
            "additionalProperties": true 
        }, 
        "operation": { 
            "$id": "#/properties/operation", 
            "description": "The name of the operation under execution of the D2D security protocol", 
            "examples": [ 
                "HELLO_SEHR" 
            ], 
            "enum": [ 
                "HELLO_SEHR", 
                "HELLO_HCP", 
                "SEHR_PUBLIC_KEY", 
                "HCP_PUBLIC_KEY", 
                "UNSIGNED_CONSENT", 
                "SIGNED_CONSENT" 
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            ], 
            "type": "string" 
        }, 
        "body": { 
            "$id": "#/properties/body", 
            "description": "The body of the message contains the exchanged data", 
            "type": "string" 
        } 
    }, 
    "additionalProperties": true 
} 

 

JSON sample for HCPPublicKey message 

{ 
 "header": { 
  "timeStamp": "2021-07-26T14:13:13.553Z", 
  "agent": "JRE 1.8.0_261 - Windows 10 10.0", 
  "protocol": "D2D", 
  "version": "1" 
 }, 
 "operation": "HCP_PUBLIC_KEY", 
 "body": "XTYRE8768LO8fwrqwm4l523k5203434279824jkhg2GTUYEbjgfg3232ljo9\u003d..." 
} 

 

JSON sample for citizenPublicKey message 

{ 

 "header": { 

  "timeStamp": "2021-07-26T14:13:14.553Z", 

  "agent": "JRE 1.8.0_261 - Windows 10 10.0", 

  "protocol": "D2D", 

  "version": "1" 

 }, 

 "operation": "SEHR_PUBLIC_KEY", 

 "body": "MIHfMIGXBgkqhkiG9w0BAwEwgYkCQQD8poLOjhLKuibvzPcRDlJtsHiwXt3d..." 

} 

 


