

 InteropEHRate project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 826106.

D3.10

Design of libraries for HR security and privacy

services - V2

ABSTRACT

This deliverable provides the second version of the design of security and privacy services, in particular the

components and the functional primitives regarding identity management, consent management,

encryption and privacy. The content of this deliverable derived from the InteropEHRate deliverables D3.3 -

Specification of remote and D2D IDM mechanisms for HRs Interoperability - V1 [D3.3], D3.7 - Specification

of consent management and decentralized authorization mechanisms for HR Exchange - V1 [D3.7] including

the progress towards the second version of the aforementioned deliverables, D3.5 - Specification of data

encryption mechanisms for mobile and web applications - V1 [D3.5] depicts the major features and

principles of designing the security libraries addressing the aforementioned security and privacy related

topics.

Delivery Date 20th April, 2021

Work Package WP3

Task T3.4

Dissemination Level Public

Type of Deliverable Report

Lead partner UBIT

InteropEHRate deliverable D3.10: Design of libraries for HR security and privacy services - V2

 ii

InteropEHRate deliverable D3.10: Design of libraries for HR security and privacy services - V2

 iii

CONTRIBUTORS

 Name Partner

Contributors Sofianna Menesidou, Etnso Veliou,

Thanassis Giannetsos

UBIT

Contributors Chrysostomos Symvoulidis, Stella

Dimopoulou

BYTE

Contributors Thanos Kiourtis UPRC

Reviewers Marcel Klötgen FRAU

Reviewers Alessio Graziani ENG

LOG TABLE

Version Date Change Author Partner

0.1 03-11-2020 First draft of ToC Entso Veliou,

Sofianna Menesidou

UBIT

0.2 05-11-2020 Introduction, Scope of the

document, Intended audience,

Structure of the document

Sofianna Menesidou UBIT

0.3 11-11-2020 Updated ToC Sofianna Menesidou UBIT

0.4 20-11-2020 Mapping the security and

privacy related requirements

to implementation APIs

Sofianna Menesidou UBIT

0.5 23-11-2020 Mapping the security and

privacy related requirements

to implementation APIs

Sofianna Menesidou UBIT

0.6 25-11-2020 Design of HR security and

privacy libraries in R2D

Sofianna

Menesidou, Entso

Veliou

UBIT

0.7 01-12-2020 Design of HR security and

privacy libraries in D2D

Thanos Kiourtis UPRC

0.8 02-12-2020 Design of HR security and

privacy libraries in D2D

Sofianna

Menesidou, Entso

Veliou

UBIT

InteropEHRate deliverable D3.10: Design of libraries for HR security and privacy services - V2

 iv

0.9 07-12-2020 Mapping the security and

privacy related requirements

to implementation APIs

Chrysostomos

Symvoulidis

BYTE

1.0 09-12-2020 Design of HR security and

privacy libraries in RDS Variant

#1 (pseudo-identities)

Stella Dimopoulou BYTE

1.1 15-12-2020 Design of HR security and

privacy libraries in RDS Variant

#2 (pseudonyms)

Sofianna

Menesidou, Entso

Veliou

UBIT

1.2 18-12-2020 Implementation Sofianna Menesidou UBIT

1.3 08-01-2020 Introduction, Updates with

respect to previous version (if

any)

Sofianna Menesidou UBIT

1.4 12-01-2021 Conclusions Sofianna Menesidou UBIT

1.5 15-01-2021 Design of HR security and

privacy libraries in RDS Variant

#1 (pseudo-identities) updates

Stella Dimopoulou BYTE

1.6 23-01-2021 Design of HR security and

privacy libraries in R2D

updated

Sofianna Menesidou UBIT

1.7 25-01-2021 Design of HR security and

privacy libraries in R2D update

Sofianna Menesidou UBIT

1.8 05-02-2021 Appendix A Sofianna Menesidou UBIT

1.9 10-02-2021 Mapping the security and

privacy related requirements

to implementation APIs

Sofianna Menesidou UBIT

2.0 19-02-2021 Appendix A Sofianna Menesidou UBIT

2.1 01-03-2021 Internal review. Marcel Klötgen FRAU

2.2 09-03-2021 Internal discussion/review

updates

Alessio Graziani,

Sofianna

Menesidou, Etnso

Veliou, Thanassis

Giannetsos

ENG, UBIT

2.3 16-03-2021 Quality check Argyro UPRC

InteropEHRate deliverable D3.10: Design of libraries for HR security and privacy services - V2

 v

Mavrogiorgou

2.4 02-04-2021 Appendix B Sofianna Menesidou UBIT

2.5 23-04-2021 Additional technical review Francesco Torelli ENG

vFinal 21-04-2021 Final check and submission Laura Pucci ENG

InteropEHRate deliverable D3.10: Design of libraries for HR security and privacy services - V2

 vi

ACRONYMS

Acronym Term and definition

ABAC Attribute-based Access Control

BLE Bluetooth Low Energy

CA Certificate Authority

CN Central Node

D2D Device to Device

DH Diffie Hellman

HO Health Organisation

HR Health Record

HCP Healthcare Professional

HSM Hardware Security Storage Module

KDF Key Derivation Function

MDS Minimum Data Set

PI Principal Investigator

PP Pseudonym Provider

QSCD Qualified Signature Creation Device

RDD Research Definition Document

RDS Research Data Sharing

RNG Random Number Generator

RRC Reference Research Center

R2D Remote to Device

SAML Security Assertion Markup Language

TPM Trusted Platform Module

InteropEHRate deliverable D3.10: Design of libraries for HR security and privacy services - V2

 vii

TABLE OF CONTENT

1. INTRODUCTION ... 1

1.1. Scope of the document ... 1

1.2. Intended audience ... 2

1.3. Structure of the document .. 2

1.4. Updates with respect to previous version (if any) .. 2

2. MAPPING THE USER REQUIREMENTS TO THE SECURITY AND PRIVACY REQUIREMENTS 4

3. DESIGN OF HR SECURITY AND PRIVACY LIBRARIES IN D2D ... 11

3.1. D2D Implementation ... 12

3.1.1. Components .. 12

3.1.2. Public Interfaces .. 13

4. DESIGN OF HR SECURITY AND PRIVACY LIBRARIES IN R2D ... 32

4.1. R2D Implementation ... 33

4.1.1. Components .. 33

4.1.2. Public Interfaces .. 35

5. DESIGN OF HR SECURITY AND PRIVACY LIBRARIES IN RDS ... 40

5.1. RDS Implementation .. 42

5.1.1. Components .. 42

5.1.2. Public Interfaces .. 43

6. CONCLUSIONS AND NEXT STEPS ... 48

APPENDIX A ... 51

APPENDIX B ... 54

InteropEHRate deliverable D3.10: Design of libraries for HR security and privacy services - V2

 viii

LIST OF FIGURES

Figure 1 - Relation with other deliverables

Figure 2 - M-D2D-SM Public Java Components

Figure 3 - T-D2D-SM Public Java Components

Figure 4 - MD2DI-Security Public Java Components Interfaces

Figure 5 - TD2DI-Security Public Java Components Interfaces

Figure 6 - M-R2D-SM Public Java Components

Figure 7 - T-R2D-SM Public Java Components

Figure 8 - MR2DI-Security Public Java Components Interfaces

Figure 9 - TR2DI-Security Public Java Components Interfaces

Figure 10 - M-RDS-SM Public Java Components

Figure 11 - T-RDS-SM Public Java Components

Figure 12 - MRDSI-Security Public Java Components Interfaces

Figure 13 - TRDSI-Security Public Java Components Interfaces

Figure 14 - eIDAS-based authentication flow

LIST OF TABLES

Table 1 - Security and Privacy related User Requirements

Table 2 - InteropEHRate security libraries and remote APIs used by…

Table 3 - Legacy security remote APIs used by the InteropEHRate…

 1

1. INTRODUCTION

1.1. Scope of the document
The security protocols and the corresponding libraries specify security schemes exploited by all the

envisioned InteropEHRate protocols. They are intended to satisfy the security goals, and the necessary

technical measures needed for enhanced “security and privacy-by-design”, following the current standards

as defined in the ENISA’s Minimum Security Measures for Operators of Essentials Services [ENISA 2020]

and the requirements of the healthcare domain [D2.2].

The main goal of this document is to describe the second version of the design of the security libraries

offered by the InteropEHRate Framework as a reference implementation of the HR security and privacy

services. The current document outlines among others the most important design features addressing

identity management, consent management, encryption and privacy based on state of the art crypto

primitives. In addition, it includes the interfaces and the Java methods offered by the security libraries. At

this stage of project implementation, the deliverable aims at depicting the major features and principles of

designing the security libraries as well as the satisfied user requirements. A top-down approach was

followed in order to identify the internal interactions for the D2D, R2D Access, R2D Backup, R2D Emergency

and RDS protocols.

In more detail, this deliverable describes the security libraries for D2D (M-D2D-SM and T-D2D-SM), for R2D

protocols (M-R2D-SM and T-R2D-SM) and for RDS (M-RDS-SM and T-RDS-SM) including the related external

components. All security libraries are Java-based. In general, the security libraries invoked by the S-EHR

App, the HCP Web App, the S-EHR Cloud, the reference Research Centre (RRC), the Central Node (CN) and

other InteropEHRate libraries. Similar to other reports of the InteropEHRate project, this document

presents the second version of the design of the libraries offered by the InteropEHRate Framework as a

reference implementation of Health Record (HR) security and privacy services. Figure 1 depicts how this

deliverable is related to the other deliverables of the project.

Figure 1 - Relation with other deliverables

 2

1.2. Intended audience
This deliverable is intended primarily for a technical audience, interested in implementing the security

functionalities of the InteropEHRate protocols. More specifically, the document is intended to security

engineers, developers, architects, and all the InteropEHRate project participants and partners interested to

have an overview of how InteropEHRate will support HR security and privacy services. These services will be

described as libraries for mobile and application developers who desire to exploit and reuse the security

functionalities offered by the InteropEHRate framework.

1.3. Structure of the document
The current document is organized in the following Sections:

Section 1 introduces the overall concept of the document, defining its scope, intended audience, relation to

the other project tasks and reports as well as the main updates with respect to the previous version.

Section 2 describes the mapping between the user requirements, introduced in the Architecture of the

InteropEHRate project, the security and privacy requirements (since it is not always straightforward what is

implied by the user requirements), as well as the implementation APIs of the security libraries .

Section 3 focuses on the design of the security libraries of the D2D protocol, including how the identity

management, encryption, consent management and authorization aspects are handled.

Section 4 focuses on the design of the security libraries of the R2D-family protocols, including how the

identity management, encryption, consent management and authorization aspects are handled. This

section includes the design of security and privacy aspects of the three different R2D protocols namely R2D

Access, R2D Backup and R2D Emergency.

Section 5 focuses on the design of the security libraries of the RDS protocols, including how the identity

management, encryption, consent management and authorization aspects are handled. The design of

libraries includes both the two proposed variants.

Section 6 concludes the document, including future research, developments and summarises the updates

of the security libraries.

Appendix A focuses on the implementation aspects, where the different security libraries and interfaces

per component and per protocol including the provided APIs are summarised for better overview on the

security libraries.

Appendix B describes the implementation aspects of the login interface, in the context of the R2D Access

protocol, focusing on the Trusted Proxy Server implementation that will be part of the Healthcare EHR. The

Trusted Proxy Server acts as a supplementary service to assist Healthcare EHR developers on an easy and

straightforward integration with the eIDAS infrastructure.

1.4. Updates with respect to previous version (if any)
Τhis document updates and supersedes the first version of the deliverable. Major updates are provided in

this document such as security aspects regarding the encryption mechanisms and the RDS protocol, that

were not included in the previous version. In addition, this version includes a detailed implementation

 3

information for better overview on the implementation aspects. Also, the security properties that the

protocols aim at have been defined, in order to be analysed in the final version of the deliverable. Last but

not least the deliverable provides the updated user-requirements and how these are mapped to security

and privacy aspects and hence to the final APIs.

 4

2. MAPPING THE USER REQUIREMENTS TO THE SECURITY AND

PRIVACY REQUIREMENTS
The main goal of this section is to highlight the security and privacy requirements necessary to

implement the InteropEHRate framework considering also the level of maturity of the solutions within the

countries. This section describes the mapping between the HR security and privacy requirements and the

identified user requirements. The user requirements have already been identified in the Architecture of the

InteropEHRate project. These can be summarized as user and data privacy, confidentiality and access

control, integrity and authenticity, availability, traceability and non-repudiation which, as explained below,

are achieved through several state-of-the-art technical measures (see Table 4 in [D3.1]). Table 1 lists all the

security and privacy related user requirements. In general, the user requirements identified to fulfil the use

cases are related to (a) assure the security of the service (like for example identification, authentication or

patient consent and encryption) and (b) access the information from/to another country (in a cross-border

context).

The security and privacy implementations targeting the Citizen as a main actor are the M-D2D-SM, M-R2D-

SM, M-RDS-SM components, the security implementations targeting the HCP as a main actor are the T-

D2D-SM, T-R2D-SM components and the security implementation targeting and the Researcher as a main

actor is the T-RDS-SM component. The next sections will provide more details on the implementation

aspects. The following table (Table 1) summarises all these requirements, with detailed descriptions

according to the users, the scenario, the component, the security requirements that are mapped and the

detailed APIs offered by the libraries. In general, twenty eight user requirements have been extracted from

all user requirements that are directly or indirectly related to the security and privacy aspects. Six of them

are related to all the three scenarios, six to the Medical Visit scenario, eight to the Research scenario and

eight to the Emergency scenario.

User
Requiremen
t

SW
Application

Scenario Security Requirements and APIs

1 Enabling of
Citizen
identificatio
n from S-EHR

S-EHR
Mobile App

All Citizen Identification. It ensures citizen

identification.

fetchCertificate, sendSEHRCertificate, signPayload,

verifySignature, createKeyStore, loadKeyStore

The S-EHR stores and sends to the HCP App the identification data of the citizen
(the identification data allows the HCP to confirm the identity of the citizen by
comparing them with the ID card of the Citizen).

 5

2 Enabling of
HCP
identificatio
n from HCP
app

HCP App All HCP Identification. It ensures HCP identification.

fetchCertificate, sendHCPCertificate, signPayload,

verifySignature

The HCP app sends to the S-EHR a description of the identity of the HCP.

3 Enabling of
healthcare
organization
identificatio
n from HCP
app

HCP App All HO Identification. It ensures HO identification.

fetchCertificate, verifySignature

The HCP app sends to the S-EHR a description of the identity of the HCP.

4 D2D
authorizatio
n to
download
and upload
S-EHR data
from HCP
App

S-EHR
Mobile &
HCP App

Medical

Visit

Citizen Consent. It ensures lawful processing of

personal data.

Confidentiality. It ensures secure and confidential

communication and processing of data.

signPayload, verifySignature, aliceInitKeyPair,

aliceKeyAgreement, alicePubKeyEnc,

aliceKeyAgreementFin, generateSymmetricKey,

encrypt, decrypt,

bobInitKeyPair,bobKeyAgreement,

bobKeyAgreementFin, bobPubKeyEnc,

generateSymmetric, encrypt, decrypt

Download and upload of health data on S-EHR from an authorized HCP App is
possible only if the Citizen's consent is valid and includes the specific operation
performed by the HCP. If consent is not valid, a new consent request should be
triggered in the S-EHR.

5 Consent to
store
Citizen's
data

HCP App Medical

Visit

Citizen Consent. It ensures lawful processing of

personal data.

 signPayload, verifySignature

Citizen's data can be stored by authorized HCP App and only until the Citizen's
consent expires.

6 Non
repudiable
data
provenance
tracking

S-EHR
Mobile &
HCP App

All Non-repudiation. It ensures non-repudiation of the

exchanged data.

Provenance tracking. It ensures where each piece

of data comes from and whether it is still up-to-

date.

signPayload, verifySignature

The author and data origin of any health data is verified (i.e. non repudiable),
tracked, visible to any authorized user and legally valid.

 6

7 Integrity of
medical
information

S-EHR
Mobile App
& HCP App

All Integrity. It ensures integrity of the stored

exchanged data.

encrypt, decrypt, signPayload, verifySignature

Users are guaranteed that the managed health data (stored or transferred)
hasn't been modified maliciously or accidentally.

8 R2D import
of (portion
of) Patient
Summary
from
national
health care
system on S-
EHR (with
security)

S-EHR App Medical

Visit

Citizen Identification. It ensures citizen

identification.

login, logout, isAuthenticated

Citizen health data (portion of Patient Summary) can be imported from the
Citizen national health care system on Citizen S-EHR.

9 Enabling of
Citizen
identificatio
n from S-EHR
(with CA)

S-EHR
Mobile App

Medical

Visit

Citizen Identification. It ensures citizen

identification.

fetchCertificate, sendHCPCertificate, signPayload,

verifySignature, createKeyStore, loadKeyStore

The S-EHR asks the Citizen and stores on the device a qualified certificate that
identifies the Citizen. The certificate is released by a CEF eID trusted certification
authority.

10 Enabling of
HCP
identificatio
n from HCP
app (with
CA)

HCP App Medical

Visit

HCP Identification. It ensures HCP identification.

fetchCertificate, sendHCPCertificate, signPayload,

verifySignature

The S-EHR asks the HCP and stores on the HCP app a certificate that identifies
the HCP. The certificate is released by a CEF eID trusted certification authority.

11 Enabling of
healthcare
organization
identificatio
n from HCP
app (with
CA)

HCP App Medical

Visit

HO Identification. It ensures HO identification.

fetchCertificate, verifySignature

The healthcare organization obtains a qualified certificate (release by a CEF eID
trusted certification authority) that is stored on HCP app

12 Digital
signature by
Reference
Research
Centre of
Citizen's
consent

S-EHR App Research Citizen Consent. It ensures lawful processing of

personal data.

getCertificate, signPayload

The Citizen receives on his/her S-EHR a digital copy of the consent (to participate
in a research he/she has been invited to) signed at the Reference Research
Centre. The digital copy is digitally signed by the Research Centre using a legal
binding mechanism.

 7

13 Citizen's
digital
signature of
consent to
share health
data for a
given study

S-EHR App Research Citizen Consent. It ensures lawful processing of

personal data.

getCertificate, retrievePseudonym,

retrievePseudoIdentity, signPayload, login, logout,

isAuthenticated

The Citizen can give his/her consent to participate in a research he/she has been
invited to and digitally sign it (in a legally binding way) directly on his/her S-EHR.

14 Citizen's
digital
revocation
of consent to
share health
data for a
given study

S-EHR App Research Citizen Consent. It ensures lawful processing of

personal data.

signPayload

A Citizen may revoke, directly from his/her S-EHR, a consent previously released
to participate in a medical research. The revocation of the consent using the S-
EHR must be legally binding for the Reference Research Centre also in case the S-
EHR does not support the digital signature of the consent by the citizen directly
on the S-EHR.

15 Automatic
anonymizatio
n and sharing
of citizen's
health data
for research.

S-EHR App +
InteropEHRat
e Research
Services

Research Privacy. It ensures the privacy of the data owner.

Citizen Consent. It ensures lawful processing of

personal data.

setPseudo, anonymizeData, pseudonymizeData

retrievePseudoIdentity, retrievePseudonym

After a citizen accepts an invitation to a research study and the study is started

according to the specified protocol, the S-EHR automatically queries its content

for the data required by the study, once or periodically, depending on the study,

and automatically sends the matching data to the IEHR Research Network. The S-

EHR anonymises the data before sharing it, if required by the protocol.

16 Activation of
automatic
backup of S-
EHR content
on selected
S-EHR Cloud

S-EHR Mobile
App & S-EHR
Cloud

Emergency Confidentiality. It ensures secure and confidential

communication and processing of data.

encrypt

Citizens can activate by means of explicit consent the automatic backup, of all the
health records stored on their S-EHR, on their preferred S-EHR Cloud service
(selected by the list of certified S-EHR Cloud services provided by the S-EHR).

17 Sharing of
health data
with
qualified
HCPs for
emergency
by means of
S-EHR Cloud

S-EHR Mobile
App & S-EHR
Cloud

Emergency Citizen Consent. It ensures lawful processing of

personal data.

 signPayload, verifySignature

Citizens can consent HCPs of Healthcare organisations to access, only for
emergency reasons, to their health data stored on the S-EHR cloud. Giving the
consent activates the automatic backup of the health data from the S-EHR to the
preferred S-EHR Cloud (selected by the list of certified S-EHR Cloud services
provided by the S-EHR). The consent authorises the HCP to access health data
using an emergency token or the identification data of the citizen.

 8

18 Citizen's
consent to
be part of
InteropEHRa
te Open
Research
Network

S-EHR Mobile
App

Research Citizen Consent. It ensures lawful processing of

personal data.

 signPayload

Using their S-EHR, and signing a digital consent, citizens can become part of the
InteropEHRate Open Research Network. From this moment the S-EHR will receive
the details of new research studies and will be authorised to match the health
data of the citizen with the enrolment criteria of the study (without sending any
health data to any party).

19 Citizen's

consent to

share health

data for a

research

protocol

S-EHR App

&

InteropEHRa

te Research

Services

Research Citizen Consent. It ensures lawful processing of

personal data.

signPayload, verifySignature

Using the S-EHR a Citizen may give an electronic consent to participate in a

specific research protocol, so accepting the condition described within the

formal published specification of that research protocol. The electronic consent

will be successively signed on paper by the citizen.

20 Pseudoidenti
ty restricted
to single
research
protocol

S-EHR Mobile
App

Research Privacy. It ensures the privacy of the data owner.
setPseudo, anonymizeData, pseudonymizeData

retrievePseudoIdentity, retrievePseudonym

When a citizen gives a digital consent to participate in a research protocol, a
specific pseudo-id for that patient will be generated, to be used only for the
pseudonymization of data shared within that specific research protocol.

21 Citizen's
access to
emergency
token

S-EHR App Emergenc

y

Availability. It ensures availability.

generateSymmetricKey, signPayload

Citizens may use their S-EHR to access and exchange with other applications an
image containing their "emergency token". The emergency token allows a
qualified HCP (authorised by his/her organization) to identify the Citizen and
access in case of emergency to his/her health data stored on the S-EHR Cloud,
also if the Citizen is unable to provide his/her identity or if the S-EHR is not
available. To this end, the Citizen will have to print, preferably on a medal or
bracelet, and wear the emergency token provided by the S-EHR.

22 Encryption
of S-EHR
content
exchanged
with S-EHR
Cloud.

S-EHR App Emergenc

y

Confidentiality. It ensures secure and confidential

communication and processing of data.

generateSymmetricKey, encrypt

Every data sent by a S-EHR to the S-EHR Cloud is encrypted by the S-EHR, before
of the transmission, with a private key unknown to the S-EHR Cloud provider, so
that the S-EHR Cloud provider cannot decrypt any stored data, but only the
Citizen and the HCP can.

 9

23 Encryption
of health
data written
by HCP on S-
EHR Cloud.

HCP App Emergenc

y

Confidentiality. It ensures secure and confidential

communication and processing of data.

verifySignature, encrypt

Every data sent by an HCP App to the S-EHR Cloud is encrypted by the HCP App,
before of the transmission, with a private key unknown to the S-EHR Cloud
provider, so that the S-EHR Cloud provider cannot decrypt any stored data, but
only the Citizen and the HCP can.

24 Legal
identificatio
n and
authenticati
on of
qualified
HCPs

HCP App +
S-EHR Cloud

Emergenc

y

HCP Identification and authentication. It ensures

HCP identification and authentication.

getCertificate, login, logout, isAuthenticated

Only HCP belonging to a recognised Healthcare organisation can access
emergency data. Each Healthcare organisation is identified by a digital identity
issued by a legal national or local authority recognised by the S-EHR Cloud and
that assures the Healthcare role of the organisation.

25 Legal
identificatio
n and
authenticati
on of
qualified
Healthcare
organisation
s

HCP App +
S-EHR Cloud

Emergenc

y

HO Identification and authentication. It ensures

HO identification and authentication.

getCertificate, login, logout, isAuthenticated

Only HCPs having a digital identity issued by a legal national or local authority
recognised by the S-EHR Cloud can access (for emergency reasons) the health
data of the Citizen.

26 Authorisatio
n to the
healthcare
team for
emergency

HCP App +
S-EHR Cloud

Emergenc

y

HCP Identification. It ensures HCP identification

and authentication.

Access Control. It ensures secure and confidential

communication and processing of data.

getCertificate, login, logout, isAuthenticated

When a qualified HCP gains access to the health data for emergency reasons,
also the rest of the healthcare team that treats that patient for that specific
emergency encounter automatically gains access to the same health data.

27 Identificatio
n and
authorisatio
n of
organisation
s and
researchers
accessing to
IRS

InteropEHRa
te Research
Services

Research HO Identification. It ensures HO identification.

Access Control. It ensures secure and confidential

communication and processing of data.

getCertificate, login, logout, isAuthenticated

Only authorised researchers belonging to organisations belonging to the
InteropEHRate Research Network may access specific functionalities, they are
authorised for, on the Open Research Network.

 10

28 Encryption
of health
data written
on S-EHR
App

S-EHR App All Confidentiality. It ensures secure and confidential

communication and processing of data.

loadKeyStore, encrypt, decrypt

The personal data of the Citizen is stored on the mobile device by the S-EHR App
in an encrypted format, decryptable only by the citizen, to avoid any
unauthorized access on the data.

Table 1 - Security and Privacy related User Requirements

 11

3. DESIGN OF HR SECURITY AND PRIVACY LIBRARIES IN D2D
This section emphasizes on the calls of the security and privacy libraries focused on Device to Device (D2D)

and describes the way they operate, their outputs and implementation details. The D2D protocol defines

the set of operations and the exchanged messages that allow the exchange of health data between a S-EHR

App and a near HCP App without the usage of internet. The security libraries of the D2D protocol provide

the necessary security functionalities for identity management, consent management, authentication and

encryption for data storage and in transit. Before digging into details of the protocols, first there is a need

to flesh out the exact security properties for the D2D protocol. A detailed security analysis will be provided

in the last version of this deliverable.

● P-1 Confidentiality. The term ‘confidentiality’ means preserving authorized restrictions on access

and disclosure, including means for protecting personal privacy and proprietary information [NIST

2003].

● P-2 Integrity. The term 'integrity' means guarding against improper information modification or

destruction, and includes ensuring information non-repudiation and authenticity [NIST 2003].

● P-3 Authentication. Security measures designed to establish the validity of a transmission,

message, or originator, or a means of verifying an individual’s authorization to receive specific

categories of information [NIST 2003].

● P-4 Freshness. A freshness value must have the property that it can be guaranteed not to have

been used before. There are three common types of freshness values used: timestamps, nonces

and counters [BOYD 2003].

● P-5 Immutability. The impossibility to tamper with the protocol’s participant actions

[SCHIEDERMEIER 2019]. Therefore, the exchange of messages must be immutable in such a way

that the parties always receive the correct messages and hence the parties are not compromised.

● P-6 Protocol Correctness. The protocol logic is sound. Each assertion about an action or sequence

of actions holds in any run of the protocol, under attack, in which the given actions occur is

provable [DURGIN 2002].

The main novelty regarding security is the instantiation of appropriate models leveraging two supported

variants for secure and authenticated Identity Management. The first variant is linked to the ID-Card of the

citizen and a QR code, generated by the hospital, which provides stronger (physical) security properties and

demonstrates high feasibility and applicability features, as a possible enabler to be put immediately into

practice after the end of the project. This variant, however, assumes the user authentication through

physical presence and the use of identifiable documents (ID card) which might hinder its scalability.

Compounding this issue, the second variant proposes to leverage citizen’s Qualified Digital Signatures. A

qualified electronic signature is an advanced electronic signature with a qualified digital certificate that has

been created by a qualified signature creation device (QSCD). This variant overcomes the (aforementioned)

scalability issues, however, it is based on the use of trusted computing technologies where a decentralized

 12

“root-of-trust” (e.g., Hardware Security Storage Module (HSM), Trusted Platform Module (TPM), etc.)

needs to be attached to the user’s end device. While the integration of such advanced trusted computing

technologies provides confidence in a system, especially if the system’s behaviour isn’t fully secure or might

become insecure, thus requiring verifiable evidence on the correct execution of the security protocols by

the system (provided by the “root-of-trust” crypto signing operations), it adds additional deployment costs.

Therefore, the goal is the adoption of such solutions when the smart-phone technology will be mature

enough for supporting qualified digital signatures through appropriate hardware- or software-based roots-

of-trust.

Apart from the usage of digital signatures for identification, such primitives were also leveraged for signing

the citizen’s consent. In addition, as it pertains to confidentiality, state-of-the-art key agreement protocols

were leveraged based on the use of the Diffie Hellman (DH) scheme and strong Pseudo-Random Number

Generators (RNG), exhibiting high entropy, thus, enabling the provision of strong security levels, tailored to

Bluetooth as the underlying network mechanism. In general, key agreement protocols are “fairer” than key

transport and can result in higher quality random keys than key transport, while by basing key agreement

on the Diffie Hellman protocol, forward secrecy can be achieved [BOYD 2003]. This is also in alignment with

the currently proposed Bluetooth Low Energy (BLE) standard.

More specifically, this section provides the design of the security libraries that can be used by any S-EHR

app, HCP App and D2D libraries. In addition, the description of the Public Java Components contained in

each library is defined, including a description of the offered interfaces of those components, while the

description of the interactions of the internal components is also described.

3.1. D2D Implementation
This section includes the components and the public interfaces for the security libraries M-D2D-SM and T-

D2D-SM. The component names are based on the security functionalities offered. These components are

also offering specific interfaces that are analysed in this section. The objective of the libraries is to allow the

usage of D2D without the need for developers to know all the technical details of the underlying D2D

protocol and technologies. The M-D2D-SM and T-D2D-SM libraries act as a proxy for a health care system

compliant to D2D protocol specifications.

3.1.1. Components

S-EHR-side M-D2D-SM Components: The M-D2D-SM library incorporates a set of components (Figure 2)

offering different functionalities and capabilities to the developer. These components can be offered

publicly (i.e. Public components), including the: (a) Identity Management, where the exchange the

exchange certificates is taking place, (b) Consent Management, that includes the signature, the validation

and the timestamp of the consent, (c) Encrypted Communication, where the Diffie Helman key agreement

is used to establish an AES256 symmetric key for the actual encryption and (d) Encrypted Storage, where

the data are stored in encrypted form using the AES256 algorithm too.

 13

Figure 2 - M-D2D-SM Public Java Components

HCP-side T-D2D-SM Components: The T-D2D-SM library incorporates a set of components (Figure 3)

offering different functionalities and capabilities to the developer. These components can be offered

publicly (i.e. Public components), with the same aforementioned functionalities in the context of M-D2D-

SM library.

Figure 3 - T-D2D-SM Public Java Components

3.1.2. Public Interfaces

MD2DI-Security: MD2DI-Security is the name of the interface that is offered by the Mobile D2D Security

Management component (M-D2D-SM), containing the operations for letting the S-EHR app and M-D2D-E

interact with the M-D2D-SM library and finally perform necessary security functionalities by invoking these

operations (Figure 4).

Figure 4 - MD2DI-Security Public Java Components Interfaces

 14

Identity Management / Operation fetchCertificate

Name fetchCertificate

Description This call generates an X.509 certificate signed by the citizen’s CA upon a CSR

request. This certificate is received and stored to the Android keystore of the

mobile device. When generating or importing a key into the Android keystore

the key will be used if the user has been authenticated first in the device. Once

keys are in the keystore, they can be used for cryptographic operations with the

key material remaining non-exportable. The Android keystore allows access to

certificates and keys from PKCS12 files. This operation is invoked by the S-EHR

App.

Arguments ● String name: Full name of the owner

● String organisation: Organisation he/she belongs (optional)

● String country: Nationality (optional)

● String uid: Unique identifier

Return Value ● void

Exceptions ● In the first version of the library implementation, certificates will be

generated and self-signed, and the following exceptions will be emitted:

○ NoSuchProviderException, in cases the KeyPairGenerator not

able to identity the provider for key pair generation (e.g.: "BC")

○ NoSuchAlgorithmException, in cases the KeyPairGenerator not

able to identity the algorithm for key pair generation (e.g. RSA)

● In the final version with the actual CA utilisation this will be replaced by

a general Exception:

○ Exception, in case of signal error or an unknown error

Preconditions ● Internet Connection

● Public/Private key generation and storage in Android keystore

Identity Management / Operation sendSHERCertificate

Name sendEHRCertificate

Description After the bluetooth pairing establishment, the first message should be the

transfer of S-EHR public key (certificate). Such a message is necessary for the

HCP App to be able to validate the S-EHR signature for identification purposes.

 15

This operation is invoked by D2D library to transfer the HCP public key.

Arguments ● void

Return Value ● void

Exceptions ● Exception

Preconditions ● Bluetooth Pairing has taken place

Identity Management / Operation signPayload

Name signPayload

Description The signature algorithm used is the RSA with SHA-256. The call will use the

private key stored in the keystore to initialize the signing operation. This

operation is invoked by S-EHR App.

Arguments ● String payload

● PrivateKey privateKey

Return Value ● String - Returns the signature of the payload of the Consent

Exceptions ● IOException,

● SignatureException

● InvalidKeyException

● NoSuchAlgorithmException

● InvalidKeySpecException

Preconditions ● HCP has successfully fetched his/her credentials

 16

Identity Management / Operation verifySignature

Name verifySignature

Description This verifies that the HCP has signed the consent with their digital signature

and the citizen verifies and acknowledges the data transfer. This operation is

invoked by S-EHR App.

Arguments ● RSAPublicKey publicKey

● byte[] payload

● byte[] signature

Return Value ● boolean - true if the signature was verified, false if not.

Exceptions ● UnsupportedEncodingException

● NoSuchAlgorithmException

● InvalidKeyException

● SignatureException

Preconditions ● HCP has requested the consent

Identity Management / Operation createKeyStore

Name createKeyStore

Description Creates a .jks file. A Java Keystore is a container for authorization certificates or

public key certificates, and is often used by Java-based applications for

encryption, authentication, and serving over HTTPS.

Arguments ● KeyPair keyPair

Return Value ● KeyStore keystore

Exceptions ● N/A

Preconditions ● A keypair is required

 17

Identity Management / Operation loadKeyStore

Name loadKeyStore

Description Loads the created keystore in the memory of the application

Arguments ● FileInputStream keystoreBytes

Return Value ● Keystore keystore

Exceptions ● KeyStoreException

● CertificateException

● NoSuchAlgorithmException

● IOException

Preconditions ● Keystore must have been created first

Consent Management / Operation signPayload

Name signPayload

Description The signature algorithm used is the RSA with SHA-256. The call will use the

private key stored in the keystore to initialize the signing operation. This

operation is invoked by the HCP App.

Arguments ● Payload payload

● Privkey privkey

Return Value ● String - Returns the signature of the payload in as String form

Exceptions ● IOException,

● SignatureException

● InvalidKeyException

● NoSuchAlgorithmException

● InvalidKeySpecException

 18

Preconditions ● HCP has successfully fetched his/her credentials

Consent Management / Operation verifySignature

Name verifySignature

Description Verifies the signature of the payload

Arguments ● RSAPublicKey publicKey

● byte[] payload

● byte[] signature

Return Value ● boolean

Exceptions ● UnsupportedEncodingException

● NoSuchAlgorithmException

● InvalidKeyException

● SignatureException

Preconditions ● Payload should be signed first

Encrypted Communication / Operation bobInitKeyPair

Name bobInitKeyPair

Description S-EHR App creates his own DH key pair.

Arguments ● byte[] alicePubKeyEnc

Return Value ● KeyPair bobKpair

Exceptions ● Exception

 19

Preconditions ● Successful generation of public key

Encrypted Communication / Operation bobKeyAgreement

Name bobKeyAgreement

Description S-EHR App creates and initializes a DH KeyAgreement object.

Arguments ● KeyPair bobKpair

Return Value ● KeyAgreement bobKeyAgree

Exceptions ● Exception

Preconditions ● Successful generation of Diffie Hellman key agreement object

Encrypted Communication / Operation bobKeyAgreementFin

Name bobKeyAgreementFin

Description S-EHR App generates the (same) shared secret.

Arguments ● PublicKey alicePubKey,

● KeyAgreement bobKeyAgree

Return Value ● KeyAgreement keyagreement

Exceptions ● Exception

 20

Preconditions ● Successful generation of Diffie Hellman key agreement

Encrypted Communication / Operation bobPubKeyEnc

Name bobPubKeyEnc

Description S-EHR App encodes his public key, and sends it over to the HCP App.

Arguments ● KeyPair bobKpair

Return Value ● byte[] bobPubKeyEnc

Exceptions ● Exception

Preconditions ● Key pair successfully created

Encrypted Communication / Operation generateSymmetricKey

Name generateSymmetricKey

Description At this stage, both S-EHR App and HCP App have completed the DH key

agreement protocol. Both generate the (same) shared secret. AES session key

that will be used for encrypted communication between the S-EHR App and HCP

App.

Arguments ● byte[] sharedSecret,

● int size

Return Value ● SecretKeySpec symKey

Exceptions ● NoSuchAlgorithmException

 21

Preconditions ● The same secret is generated

Encrypted Communication / Operation encrypt

Name encrypt

Description Transmitting an encrypted message from S-EHR App to HCP App. S-EHR

Appencrypts, using AES in CBC mode.

Arguments ● String payload,

● String symKey

Return Value ● String cipher

Exceptions ● Exception

Preconditions ● Symmetric key agreement established

Encrypted Communication / Operation decrypt

Name decrypt

Description S-EHR App decrypts, using AES in CBC mode

Arguments ● String payload,

● String symKey

Return Value ● String plaintext

Exceptions ● Exception

 22

Preconditions ● Symmetric key agreement established

Encrypted Storage / Operation generateSymmetricKey

Name generateSymmetricKey

Description At this stage, both S-EHR App and HCP App have completed the DH key

agreement protocol. Both generate the (same) shared secret. AES session key

that will be used for encrypted communication between the S-EHR App and HCP

App.

Arguments ● void

Return Value ● String symKey

Exceptions ● NoSuchAlgorithmException

Preconditions ● N/A

Encrypted Storage / Operation encrypt

Name encrypt

Description Encryption of files locally on the storage available to the application with AES

Arguments ● String payload,

● String symKey

Return Value ● String cipher

Exceptions ● Exception

 23

Preconditions ● Symmetric key agreement generated

Encrypted Storage / Operation decrypt

Name decrypt

Description Decryption of files locally on the storage available to the application with AES

Arguments ● String payload,

● String symKey

Return Value ● String plaintext

Exceptions ● Exception

Preconditions ● Symmetric key agreement generated

TD2DI-Security: MT2DI-Security is the name of the interface that is offered by the Terminal D2D Security

Management component, containing the operations for letting the HCP app and T-D2D-E interact with the

T-D2D-SM library and finally perform necessary security functionalities, by invoking these operations

(Figure 5).

Figure 5 - TD2DI-Security Public Java Components Interfaces

 24

Identity Management / Operation fetchCertificate

Name fetchCertificate

Description This call generates an X.509 certificate from the HCP’s CA upon a CSR request.

This certificate is received by and stored to the keystore of the HCP’s device. In

Java 9, the default keystore type will be changed to PKCS12, while in earlier

versions this was the Java Key Store (JKS). PKCS12 is a file format to store

certificates and private keys. The KeyStore API in Java also allows to access

certificates and keys from PKCS12 files. This operation is invoked by HCP App.

Arguments ● String name: Full name of the owner

● String organisation: Organisation he/se belongs (optional)

● String country: Nationality (optional)

● String uid: Unique identifier

Return Value ● void

Exceptions ● NoSuchKeyException

● KeyStoreException

● CertificateException

● NoSuchAlgorithmException

● IOException

Preconditions ● Internet Connection

● Public/Private key generation and storage in keystore

Identity Management / Operation sendHCPCertificate

Name sendHCPCertificate

Description After the bluetooth pairing establishment, the first message should be the

transfer of HCP public key (certificate). Such a message is necessary for the S-

EHR App to be able to validate the HCP signature for identification purposes.

This operation is invoked by D2D library to transfer the HCP public key.

Arguments ● void

 25

Return Value ● void

Exceptions ● Exception

Preconditions ● Bluetooth Pairing has taken place

Identity Management / Operation signPayload

Name signPayload

Description The signature algorithm used is the RSA with SHA-256. The call will use the

private key stored in the keystore to initialize the signing operation. This

operation is invoked by the HCP App.

Arguments ● String Payload

● Privkey privkey

Return Value ● String - Returns the signature of the payload in as String form

Exceptions ● IOException

● SignatureException

● InvalidKeyException

● NoSuchAlgorithmException

● InvalidKeySpecException

Preconditions ● HCP has successfully fetched his/her credentials

Identity Management / Operation verifySignature

Name verifySignature

Description This verifies that the HCP has signed the consent with their digital signature

and the citizen verifies and acknowledges the data transfer. This operation is

invoked by the S-EHR App.

 26

Arguments ● RSAPublicKey publicKey

● byte[] payload

● byte[] signature

Return Value ● boolean - true if the signature was verified, false if not.

Exceptions ● UnsupportedEncodingException

● NoSuchAlgorithmException

● InvalidKeyException

● SignatureException

Preconditions ● HCP has requested the consent

Consent Management / Operation signPayload

Name signPayload

Description The signature algorithm used is the RSA with SHA-256. The call will use the

private key stored in the keystore to initialize the signing operation. This

operation is invoked by the HCP App.

Arguments ● String Payload

● Privkey privkey

Return Value ● String - Returns the signature of the payload in as String form

Exceptions ● IOException

● SignatureException

● InvalidKeyException

● NoSuchAlgorithmException

● InvalidKeySpecException

Preconditions ● HCP has successfully fetched his/her credentials

 27

Consent Management / Operation verifySignature

Name verifySignature

Description Verifies the signature of the payload

Arguments ● RSAPublicKey publicKey

● byte[] payload

● byte[] signature

Return Value ● boolean

Exceptions ● UnsupportedEncodingException

● NoSuchAlgorithmException

● InvalidKeyException

● SignatureException

Preconditions ● Payload should be signed first

Encrypted Communication / Operation aliceInitKeyPair

Name aliceInitKeyPair

Description HCP App creates his own DH key pair.

Arguments ● void

Return Value ● KeyPair aliceKpair

Exceptions ● Exception

Preconditions ● S-EHR App has generated and sent its Public key

 28

Encrypted Communication / Operation aliceKeyAgreement

Name aliceKeyAgreement

Description Alice gets the DH parameters associated with Bob's public key. He must use the

same parameters when he generates his own keypair.

Arguments ● KeyPair aliceKpair

Return Value ● KeyAgreement aliceKeyAgree

Exceptions ● Exception

Preconditions ● Successful Diffie Hellman key pair generation

Encrypted Communication / Operation alicePubKeyEnc

Name alicePubKeyEnc

Description Alice encodes her public key, and sends it over to Bob.

Arguments ● KeyPair aliceKpair

Return Value ● byte[] alicePubKeyEnc

Exceptions ● Exception

Preconditions ● Key pair successfully created

 29

Encrypted Communication / Operation aliceKeyAgreementFin

Name aliceKeyAgreementFin

Description HCP App generates the (same) shared secret.

Arguments ● byte[] bobPubKeyEnc,

● KeyAgreement aliceKeyAgree

Return Value ● KeyAgreement keyagreement

Exceptions ● Exception

Preconditions ● Successful generation of Diffie Hellman key agreement

Encrypted Communication / Operation generateSymmetricKey

Name generateSymmetricKey

Description At this stage, both S-EHR App and HCP App have completed the DH key

agreement protocol. Both generate the (same) shared secret. AES session key

that will be used for encrypted communication between the S-EHR App and HCP

App.

Arguments ● byte[] sharedSecret,

● int size

Return Value ● SecretKeySpec symKey

Exceptions ● Exception

Preconditions ● The same secret is generated

 30

Encrypted Communication / Operation encrypt

Name encrypt

Description Transmitting an encrypted message from HCP App to S-EHR App. HCP App

encrypts, using AES in CBC mode.

Arguments ● String payload

● String symkey

Return Value ● String cipher

Exceptions ● Exception

Preconditions ● Symmetric key agreement established

Encrypted Communication / Operation decrypt

Name decrypt

Description HCP App App decrypts, using AES in CBC mode

Arguments ● String payload

● String symkey

Return Value ● String plaintext

Exceptions ● Exception

Preconditions ● Symmetric key agreement established

 31

Encrypted Storage / Operation encrypt

Name encrypt

Description Encryption of files locally on the storage available to the application

Arguments ● String payload

● String symkey

Return Value ● String cipher

Exceptions ● Exception

Preconditions ● Symmetric key agreement generated

Encrypted Storage / Operation decrypt

Name decrypt

Description Decryption of files locally on the storage available to the application

Arguments ● String payload

● String symkey

Return Value ● String plaintext

Exceptions ● Exception

Preconditions ● Symmetric key agreement generated

 32

4. DESIGN OF HR SECURITY AND PRIVACY LIBRARIES IN R2D
This section emphasizes on the calls of the security and privacy libraries focused on Remote to Device (R2D)

protocols and describes the way they operate, their outputs and implementation details. The R2D protocols

namely R2D Access, R2D Backup and R2D Emergency define the set of operations and the exchanged

messages that allow the exchange of health data over the Internet. The security libraries of R2D protocols

provide the necessary security functionalities for identity management, consent management,

authentication and encryption for data storage and in transit. Before digging into details of the protocols

there is a need to flesh out the exact security properties for the R2D protocols. A detailed security analysis

will be provided in the last version of this deliverable.

● P-1 Confidentiality. The term ‘confidentiality’ means preserving authorized restrictions on access

and disclosure, including means for protecting personal privacy and proprietary information [NIST

2003].

● P-2 Integrity. The term 'integrity' means guarding against improper information modification or

destruction, and includes ensuring information non-repudiation and authenticity [NIST 2003].

● P-3 Authentication. Security measures designed to establish the validity of a transmission,

message, or originator, or a means of verifying an individual’s authorization to receive specific

categories of information [NIST 2003].

● P-4 Authorization and Access Control. Access control or authorization, on the other hand, is the

decision to permit or deny a subject access to system object [NIST 2014].

● P-5 Freshness. A freshness value must have the property that it can be guaranteed not to have

been used before. There are three common types of freshness value used: timestamps, nonces and

counters [BOYD 2003].

● P-6 Immutability. The impossibility to tamper with the protocol’s participant actions

[SCHIEDERMEIER 2019]. Therefore, the exchange of messages must be immutable such that the

parties always receive the correct messages and hence the parties are not compromised.

● P-7 Protocol Correctness. The protocol logic is sound. Each assertion about an action or sequence

of actions holds in any run of the protocol, under attack, in which the given actions occur is

provable [DURGIN 2002].

The main novelty of security and privacy is that the R2D Access leverages an eIDAS-based architecture for

cross-border identification/authentication of the citizen supporting the trust services and electronic

identification, as defined by the current eIDAS framework. In addition, all established communication

sessions are protected with the most suitable and robust encryption technologies needed to secure

different types of information, while still allowing for (future) advanced knowledge discovery through the

provision of enhanced data search services and advanced security and privacy-preserving primitives for

authentication, authorization and data integrity verification. More specifically, all exchanged and stored

information in the S-EHR Cloud leveraging the R2D Backup and R2D Emergency protocols are symmetrically

 33

encrypted with AES-256, using encryption keys generated from a strong KDF that demonstrates high

entropy and randomness [NIST ENTR]. The main advantage of such a mechanism is the efficiency and

effectiveness provided, through the use of appropriate lightweight cryptographic primitives.

More specifically, this section provides the design of the security libraries that can be used by any S-EHR

app, HCP App and R2D libraries. In addition, the description of the Public Java Components contained in

each library is defined, including a description of the offered interfaces of those components, while the

description of the interactions of the internal components is also provided. The following sections describe

the security and privacy models in the context of R2D. More precisely, the S-EHR-side R2D security

management (i.e. M-R2D-SM) and the HCP-side R2D security management (i.e. T-D2D-SM) libraries contain

all the crypto operations needed from the side of the S-EHR and HCP respectively.

4.1. R2D Implementation
This section includes the components and the public interfaces for the security libraries M-R2D-SM and the

T-R2D-SM. As with the D2D, the component names are based on the security functionalities offered. These

components are also offering specific interfaces that are analysed in this section. The objective of the

libraries is to allow the usage of R2D without the need for developers to know all the technical details of

the underlying R2D concrete protocols and technologies. The M-R2D-SM and T-R2D-SM libraries act as a

proxy for a health care system compliant to R2D protocol specifications.

4.1.1. Components

S-EHR-side M-R2D-SM Components: The M-R2D-SM library incorporates a set of components (Figure 6)

offering different functionalities and capabilities to the developer. These components can be offered

publicly (i.e. Public components), including the: (a) Identity Management, where the identification and

authentication over eIDAS or Keycloak is supported, (b) Consent Management, that includes the signature,

the validation and the timestamp of the consent, (c) Encrypted Communication, where the Diffie Helman

key agreement is used to establish an AES256 symmetric key for the actual encryption and (d) Encrypted

Storage, where the data are stored in encrypted form using the AES256 algorithm. Encrypted

Communication, Encrypted Storage and Consent Management offer exactly the same APIs with the M-D2D-

SM and T-D2D-SM and for that reason we will omit to analyse them in new tables.

 34

Figure 6 - M-R2D-SM Public Java Components

HCP-side T-R2D-SM Components: The T-R2D-SM library incorporates a set of components (Figure 7)

offering different functionalities and capabilities to the developer. These components can be offered

publicly (i.e. Public components), including the: (a) Identity Management and authorization, where the

exchange the exchange certificates is taking place, (b) Consent Management, that includes the signature,

the validation and the timestamp of the consent, (c) Encrypted Communication, where the Diffie Helman

key agreement is used to establish an AES256 symmetric key for the actual encryption and (d) Encrypted

Storage, where the data are stored in encrypted form using the AES256 algorithm too. Again we omit to

analyse in new tables the same APIs.

Figure 7 - T-R2D-SM Public Java Components

Trusted Proxy Server Component: The P-R2D-SM library incorporates a set of components offering

different functionalities and capabilities to the R2D Access Server. More details regarding the

implementation aspects of this component are described in APPENDIX B, with a detailed sequence diagram

and API calls.

 35

4.1.2. Public Interfaces

MR2DI-Security: MR2DI-Security is the name of the interface that is offered by the Mobile R2D Security

Management component, containing the operations for letting the S-EHR app and M-R2D-E interact with

the M-R2D-SM library and finally perform necessary security functionalities, by invoking these operations

(Figure 8).

Figure 8 - MR2DI-Security Public Java Components Interfaces

R2DAccess / Operation login

Name login

Description The patient is using a secure login service provided by eIDAS provider or a

trusted third party for getting an authenticated session to the InteropEHRate

services. Besides secure authentication, the goal is to also provide enhanced

protection of the user login credentials against malicious S-EHR App

instantiations.

Arguments ● String countryA - parameter needed for redirecting to the respective

eIDAS Node of the provided country, where the user through a secure

login service (provided by eIDAS or a trusted third party) will get an

authenticated session to the InteropEHRate services. This allows

InteropEHRate to enhance protection against malicious S-EHR apps.

Return Value ● HTTP redirect with the requested records

Exceptions ● Exception

 36

Preconditions ● eIDAS registration

R2DAccess / Operation logout

Name Logout

Description The patient will log out

Arguments ● void

Return Value ● void

Exceptions ● Exception

Preconditions ● An already active session

R2DAccess / Operation isAuthenticated

Name isAuthenticated

Description A boolean value that checks if the patient is still in an active session

Arguments ● void

Return Value ● boolean

Exceptions ● Exception

Preconditions ● Patient has authenticated through eIDAS successfully

 37

R2DBackup / Operation encrypt

Name encrypt

Description Storage encryption of the Health Records of the patient

Arguments ● String payload

● String symkey

Return Value ● String

Exceptions ● Exception

Preconditions ● Symmetric key agreement generated

TR2DI-Security: MT2DI-Security is the name of the interface that is offered by the Terminal R2D Security

Management component, containing the operations for letting the HCP app and T-R2D-E interact with the

T-R2D-SM library and finally perform necessary security functionalities, by invoking these operations

(Figure 9).

Figure 9 - TR2DI-Security Public Java Components Interfaces

R2DEmergency / Operation login

Name login

 38

Description Healthcare professional login action as he is a part of valid healthcare

organisation

Arguments ● String username

● String password

Return Value ● void

Exceptions ● Exception

Preconditions ● HCP has registered to the service

R2DEmergency / Operation logout

Name logout

Description The HCP will log out from our services

Arguments ● void

Return Value ● void

Exceptions ● Exception

Preconditions ● An already active session

R2DEmergency /Operation isAuthorised

Name isAuthorised

Description A boolean value that checks if the HCP has authorization to perform the specific

action

 39

Arguments ● void

Return Value ● boolean

Exceptions ● Exception

Preconditions ● HCP has authenticated through the service successfully

R2DEmergency /Operation decrypt

Name decrypt

Description Storage decryption of the Health Records of the patient

Arguments ● String payload

● String symKey

Return Value ● String

Exceptions ● Exception

Preconditions ● HCP has generated his/her key pair

 40

5. DESIGN OF HR SECURITY AND PRIVACY LIBRARIES IN RDS
This section emphasizes on the calls of the security and privacy libraries focused on Research Data Sharing

(RDS) and describes the way they operate, their outputs and implementation details. The RDS protocol

addresses the general problem of collecting health data for cross-border medical research in order to

enable secure and privacy-preserving cross-border data collection [D4.8]. The security libraries of the RDS

protocol provide the necessary security functionalities for identity management, consent management,

authentication, encryption and privacy for data storage and in transit, while two variants are supported for

privacy (anonymisation) a) with pseudo-identities and b) with pseudonyms. Before digging into details of

the protocols there is a need first to flesh out the exact security properties for the RDS protocols. A detailed

security analysis will be provided in the last version of this deliverable.

● P-1 Confidentiality. The term ‘confidentiality’ means preserving authorized restrictions on access

and disclosure, including means for protecting personal privacy and proprietary information [NIST

2003].

● P-2 Integrity. The term 'integrity' means guarding against improper information modification or

destruction, and includes ensuring information non-repudiation and authenticity [NIST 2003].

● P-3 Authentication. Security measures designed to establish the validity of a transmission,

message, or originator, or a means of verifying an individual’s authorization to receive specific

categories of information [NIST 2003].

● P-4 Freshness. A freshness value must have the property that it can be guaranteed not to have

been used before. There are three common types of freshness value used: timestamps, nonces and

counters [BOYD 2003].

● P-5 Immutability. The impossibility to tamper with the protocol’s participant actions

[SCHIEDERMEIER 2019]. Therefore, the exchange of messages must be immutable such that the

parties always receive the correct messages and hence the parties are not compromised.

● P-6 Protocol Correctness. The protocol logic is sound. Each assertion about an action or sequence

of actions holds in any run of the protocol, under attack, in which the given actions occur is

provable [DURGIN 2002].

● P-7 Privacy. Freedom from intrusion into the private life of an individual when that intrusion results

from undue or illegal gathering and use of data about that individual [ISO/IEC 2382:2015].

● P-9 Unlikability. All data processing is operated in such a way that the privacy-relevant data are

unlinkable to any other set of privacy-relevant data outside of the domain, or at least that the

implementation of such linking would require disproportionate efforts for the entity to establishing

such linkage [Zwingelberg 2011].

● P-8 Anonymity. Patients should not be identifiable. Observers should not be able to infer private

information and whether a user performed or will perform a specific action. Moreover, no observer

 41

should be able to link an action to the user or infer if two (or more) actions were performed by the

same user (S-EHR App). Anonymity is conditional in the sense that it can be revoked when users

deliberately disrupt the operation of the system or contaminate the data collection process

[SSPEAR 2014].

● P-10 Non Repudiation and Accountability. Actions should be non-repudiable and all system

entities (i.e., users and infrastructure components) should be held accountable for their actions

[SSPEAR 2014]. In addition, in the case of emergency, de-anonymization should be possible.

One of the novelties regarding security and privacy is the federated trust relationship among the eIDAS

Node and the Pseudonym Provider (PP) established by means of Security Assertion Markup Language

(SAML). The RDS protocol leverages an eIDAS-based architecture for cross-border

identification/authentication of the citizen and the usage of pseudonyms for privacy preservation. The

German BSI agency introduced several security mechanisms regarding the use of identity tokens for

authentication purposes [Bundesamt 2015]. In such situations, a token for electronic Identification,

Authentication and trust Services (e.g. eIDAS token) connects to a service provider. This idea was also

adopted in our case with the PP. Pseudonymisation has an important role in GDPR as a security measure

(art. 32 GDPR), as well as in the context of data protection by design (art. 25 GDPR) [ENISA 2018]. In terms

of privacy preservation, two variants are used, one standardized with the state-of-the-art crypto primitives

for enriching privacy and one with the currently adopted mechanisms by the end-users. These variants are

addressed in the text below. As already stated in [ENISA 2021], there is no fit-for-all pseudonymisation

technique and a detailed analysis of the case is necessary. The usage of the second variant does not

enhance the applicability of the InteropEHRate framework but allows to perform a detailed investigation of

new privacy-preserving enablers that can extend the state of the art and be potentially considered as a new

standard. Pseudonymisation can go beyond hiding real identities and data minimisation into supporting the

unlinkability [ENISA 2021] making high entropy pseudonyms necessary. Currently three different

pseudonymisation policies have been considered [ENISA 2021]: a) deterministic pseudonymisation, b)

document randomised pseudonymisation and c) full randomised pseudonymisation. The first variant

matches the document randomised pseudonymisation policy, while the second variant applies to the full

randomised pseudonymisation policy. With regard to pseudonymisation policies, fully randomised

pseudonymisation offers the best protection level (e.g. un-linkability).

In the first variant, we use pseudo-identities in order to replace all direct and indirect identifiers of a citizen

with an alphanumeric sequence. In this way, if necessary, the citizen can be re-identified only by the

Principal Investigator (PI) of the study. Such cases may be for example an emergency or an identified health

issue of the citizen, identified during the research. The abovementioned sequence consists of three parts; a

prefix, which is declared inside the Research Definition Document (RDD) by the organization who conducts

the research, an incrementally increasing number, and a suffix. The prefix will be the same for a specific

study, and it will change per study. The increasing number, that follows the prefix, will be used in order to

distinguish the citizens in a study, whereas the suffix will be a random value, which will add a factor of

randomness in the pseudo-id.

In addition, every citizen will have a different pseudo-id for a specific study, and by extension each citizen

will have a different pseudo-id for a different study. Even though the pseudo-ids will be unique, no one,

 42

except for the PI of the study, will be able to re-identify a citizen. After the pseudo-id is created by the PI at

the Reference Research Center (RRC), it will be sent and stored locally at the citizen’s phone (S-EHR Mobile

Application). Afterwards, the S-EHR app will anonymize the citizen’s data. The anonymized data is then sent

along with the pseudo-id to the RRC. The anonymized data accompanied with the pseudo-id is also known

as pseudonymized data. In contrast with the pseudonyms below, the pseudo-ids have a lower degree of

randomness, and so they are less secure when it comes to unauthorized identification. Furthermore, they

are human-readable which is mostly preferred by the hospitals and the organizations, in general, as

opposed to the pseudonyms.

In the second variant, we use pseudonyms by leveraging a trusted PP. A PP is a trusted organisation

responsible for the pseudonym management of the short term anonymous credentials (according to the

IEEE 1609.2 specification), to be provided to the S-EHR App, and use for the anonymous communication of

the citizen’s health data to a (Research) Reference Centre (RRC). Such a scheme provides higher user

privacy levels even in the complex scenario where users move around different domains (i.e., countries or

member states) and they need to acquire pseudonyms without revealing personal information regarding

their country of origin. Furthermore, this specification also copes with important aspects of the pseudonym

lifecycle like pseudonym resolution (when there is a need for linking - anonymized - data back to users in

case of a health emergency), protection from misuse by authorities, and even pseudonym change while

demonstrating high levels of scalability and efficiency. The exchanged information is symmetrically

encrypted following the current AES-256 crypto standard.

More specifically, this section provides the design of the security libraries that can be used by any S-EHR

app, RRC, CN and RDS libraries. In addition, the description of the Public Java Components contained in

each library is defined, including a description of the offered and required interfaces of those components,

while the description of the interactions of the internal components is also described.

5.1. RDS Implementation
This section includes the components and the public interfaces for the security libraries M-RDS-SM and the

T-RDS-SM. The component names are based on the security functionalities offered. These components are

also offering specific interfaces that are analysed in this section. The objective of the libraries is to allow the

usage of RDS without the need for developers to know all the technical details of the underlying RDS

protocol and technologies. The M-RDS-SM and T-RDS-SM libraries act as a proxy for a health care system

compliant to RDS protocol specifications.

5.1.1. Components

S-EHR-side M-RDS-SM Components: The M-RDS-SM library incorporates a set of components (Figure 10)

offering different functionalities and capabilities to the developer. These components can be offered

publicly (i.e. Public components), including the: (a) Identity Management, where the exchange the

exchange certificates is taking place and eIDAS-based authentication of the 2nd variant, (b) Consent

Management, that includes the signature, the validation and the timestamp of the consent, (c) Encrypted

Communication, where the Diffie Helman key agreement is used to establish an AES256 symmetric key for

the actual encryption, (d) Encrypted Storage, where the data are stored in encrypted form using the

AES256 algorithm too and (e) Privacy and Anonymisation, where the data to be shared anonymised. Again

the same APIs are omitted to be analysed in new tables .

 43

Figure 10 - M-RDS-SM Public Java Components

RRC and CN-side T-D2D-SM Components: The T-RDS-SM library incorporates a set of components (Figure

11) offering different functionalities and capabilities to the developer. These components can be offered

publicly (i.e. Public components), including the: (a) Identity Management, where the exchange the

exchange certificates is taking place, (b) Consent Management, that includes the signature, the validation

and the timestamp of the consent, and (c) Encrypted Communication, where the Diffie Helman key

agreement is used to establish an AES256 symmetric key for the actual decryption. Again the same APIs are

omitted to be analysed in new tables .

Figure 11 - T-RDS-SM Public Java Components

5.1.2. Public Interfaces

MRDSI-Security: MRDSI-Security is the name of the interface that is offered by the Mobile RDS Security

Management component, containing the operations for letting the S-EHR app and M-RDS interact with the

M-RDS-SM library and finally perform necessary security functionalities, by invoking these operations.

 44

Figure 12 - MRDSI-Security Public Java Components Interfaces

Privacy & Anonymization /Operation setPseudo

Name setPseudo

Description Set a pseudo-identity (Variant 1) or a pseudonym (Variant 2), used to

pseudonymize a citizen’s health data.

Arguments ● String pseudoType, indicates whether the library should use a pseudo-

identity or a pseudonym

● String pseudo, sets the pseudo-identity/pseudonym which will

substitute a citizen’s personal information

Return Value ● void

Exceptions ● N/A

Preconditions ● N/A

 45

Privacy & Anonymization /Operation anonymiseData

Name anonymiseData

Description Anonymize structured data.

Arguments ● String data, a FHIR bundle containing FHIR resources, attributes, and

values, that need to be anonymized

● String typeOfFile, the type of the data file

Return Value ● Bundle, the same FHIR bundle as in the input, except that identifying

data provided in the input are deleted.

Exceptions ● FHIRParsingException, in case the input is not parseable as a FHIR

bundle

Preconditions ● The pseudo-id/pseudonym must be set.

Privacy & Anonymization /Operation pseudonymizeData

Name pseudonymizeData

Description Pseudonymize structured data.

Arguments ● String data, a FHIR bundle containing FHIR resources, attributes, and

values, that need to be anonymized

● String typeOfFile, the type of the data file

Return Value ● Bundle, the same FHIR bundle as in the input, except that identifying

data provided in the input are deleted.

Exceptions ● FHIRParsingException, in case the input is not parseable as a FHIR

bundle

Preconditions ● The pseudo-id/pseudonym must be set.

TRDSI-Security: TRDSI-Security is the name of the interface that is offered by the Research RDS Security

Management component, containing the operations for letting the research center and S-RDS interact with

 46

the R-RDS-SM library and finally perform necessary security functionalities, by invoking these operations. In

the final version we will also explore how to reverse the Pseudo-id and Pseudonyms and an updated API

will be provided included reversePsedoIdentity and reversePseudonym operations.

Figure 13 - TRDSI-Security Public Java Components Interfaces

Privacy & Anonymization /Operation getPseudoIdentity (Variant 1 - for pseudo-identity-based

studies)

Name getPseudoIdentity

Description Allows a S-EHR App to receive a pseudo-identity which has been generated at

the RRC.

Caller The RDS-Logic library running on the S-EHR App, through the intermediary of

the RDSI-Client library.

Arguments ● String studyID, the ID of the study for which the pseudo-id shall be

generated

Return Value ● String, a string containing the pseudo-identity generated.

Exceptions ● Exception, invalid content (study ID);

Preconditions ● The S-EHR App must have checked that the Citizen’s data fulfils the

enrolment criteria for the study, and that the Citizen consents to

participating in the study.

 47

Privacy & Anonymization /Operation getPseudonym (Variant 2- for pseudonym-based studies)

Name getPseudonym

Description Allows a S-EHR App to receive a pseudonym from a trusted third party that acts

as a PP. This trusted third party could also be the RRC or any other entity.

Caller The RDS-Logic library running on the S-EHR App, through the intermediary of

the RDSI-Client library.

Arguments ● String anAssertion, Anonymous assertion token

Return Value ● String, a string containing the pseudonym generated.

Exceptions ● Exception, invalid content (study ID);

Preconditions ● The S-EHR App must have checked that the Citizen’s data fulfils the

enrolment criteria for the study, and that the Citizen consents to

participating in the study.

● S-EHR App already authenticated by an eIDAS node

 48

6. CONCLUSIONS AND NEXT STEPS
The objective of this report was to deliver the second version of the design of the security and privacy

services libraries offered by the InteropEHRate Framework as a reference implementation. In the same

notion as the other reports of the InteropEHRate project, this document presents the second draft of the

intended content of the security and privacy libraries and their further functionality purposes. The

deliverable serves as a detailed guide for the design of all the security and privacy aspects until the second

year of the project.

The deliverable among others, highlights a) the mapping between the user requirements and the

implemented interfaces, b) the different security components along with the offered functionalities.

Last but not least, the third version of this report will include the final design of libraries for HR security and

privacy services. This final report will be updated with the final modifications and improvements on all the

security libraries, including on how to address the consent revocation, ABAC-based HCP authorization and

also updates regarding the D2D and R2D Access that are currently in an improvement and refactoring

phase. Last but not least in the final release of the deliverable we will also provide a detailed security

analysis of all the protocols.

 49

REFERENCES

● [BOYD 2003] Boyd, Colin and Mathuria, Anish. Protocols for Authentication and Key Establishment.

2003. Springer-Verlag Berlin Heidelberg. 10.1007/978-3-662-09527-0

● [Bundesamt 2015] Bundesamt fur Sicherheit in der Informationstechnik (BSI). Advanced security

mechanisms for machine readable travel documents and eIDAS token, part 2 – protocols for

electronic identification, authentication and trust services (eIDAS), technical guideline TR-03110-2,

v2.20, February 2015.

● [D2.2] InteropEHRate Consortium, D2.2-User Requirements for cross-border HR integration - V1,

2020. www.interopehrate.eu/resources/#dels

● [D3.1] InteropEHRate Consortium, D3.1: Specification of S-EHR mobile privacy and security

conformance levels - V1, 2020. www.interopehrate.eu/resources/#dels

● [D3.3] InteropEHRate Consortium, D3.3: Specification of remote and D2D IDM mechanisms for HRs

Interoperability - V1, 2019. www.interopehrate.eu/resources/#dels

● [D3.5] InteropEHRate Consortium, D3.5: Specification of data encryption mechanisms for mobile

and web applications - V1, 2020. www.interopehrate.eu/resources/#dels

● [D3.7] InteropEHRate Consortium, D3.7: Specification of consent management and decentralized

authorization mechanisms for HR Exchange - V1, 2019. www.interopehrate.eu/resources/#dels

● [D4.2] InteropEHRate Consortium, D4.2: Specification of remote and D2D protocol and APIs for HR

exchange - V2, 2020. www.interopehrate.eu/resources/#dels

● [D4.8] InteropEHRate Consortium, D4.8: Specification of protocol and APIs for research health data

sharing - V1, 2021. www.interopehrate.eu/resources/#dels

● [DURGIN 2002] N. Durgin, J. Mitchell and D. Pavlovic, "A compositional logic for protocol

correctness," in Proceedings 14th IEEE Computer Security Foundations Workshop, 2001., Cape

Breton, Novia Scotia, Canada, 2001, doi: 10.1109/CSFW.2001.930150

● [eIDAS 2016] eIDAS Technical Sub-group, eIDAS SAML Attribute Profile V1.1, 2016

● [ENISA 2018] ENISA, “Recommendations on shaping technology according to GDPR provisions - An

overview on data pseudonymisation”, 2018.

● [ENISA 2020] ENISA. “Minimum Security Measures for Operators of Essentials Services”. 2020.

● [ENISA 2021] ENISA. “Pseudonymisation for Personal Data Protection”. 2021.

● [Gisdakis 2013] S. Gisdakis, M. Laganà, T. Giannetsos and P. Papadimitratos, "SEROSA: SERvice

oriented security architecture for Vehicular Communications," 2013 IEEE Vehicular Networking

Conference, Boston, MA, USA, 2013, pp. 111-118, doi: 10.1109/VNC.2013.6737597.

● [ISO/IEC 2382:2015] ISO/IEC 2382:2015 Information technology — Vocabulary — Part 8: Security,

1998

 50

● [NIST 2003] National Institute of Standards and Technology. NIST SP 800-59, Guideline for

Identifying an Information System as a National Security System, 2003

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-59.pdf

● [NIST 2014] National Institute of Standards and Technology. NIST SP 800-162, Guide to Attribute

Based Access Control (ABAC) Definition and Considerations, 2014

https://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.sp.800-162.pdf

● [NIST ENTR] National Institute of Standards and Technology. NIST SP 800-22, A Statistical Test Suite

for Random and Pseudorandom Number Generators for Cryptographic Applications.

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf

● [SCHIEDERMEIER 2019] M. Schiedermeier, O. Hasan, T. Mayer, L. Brunie, H. Kosch, A transparent

referendum protocol with immutable proceedings and verifiable outcome for trustless networks,

2019, arXiv:1909.06462v1

● [SSPEAR 2014] S. Gisdakis, T. Giannetsos, and P. Papadimitratos. 2014. SPPEAR: security & privacy-

preserving architecture for participatory-sensing applications. In Proceedings of the 2014 ACM

conference on Security and privacy in wireless & mobile networks (WiSec '14). Association for

Computing Machinery, New York, NY, USA, 39–50. DOI:https://doi.org/10.1145/2627393.2627402

● [Zwingelberg 2011] Harald Zwingelberg, Marit Hansen. Privacy Protection Goals and Their

Implications for eID Systems. PrimeLife. 2011: 245-260

 51

APPENDIX A
This section summarises all the different security libraries and the corresponding offered APIs by the

different protocols (e.g. D2D, R2D and RDS) and by the different components (e.g. S-EHR App, HCP App,

RRC/CN). Table 2 provides a detailed mapping of the component, the protocol library, the security library

and the remote interface, while Table 3 provides the security-related necessary legacy remote APIs for

completion.

Protocol

Family

Componen

t

Protocol

Libraries

Security

Libraries

Remote

Security

Interfaces

APIs Description

All

S-EHR App fetchCertificate

HCP App,

RRC, CN

 fetchCertificate

D2D

S-EHR App M-D2D-E M-D2D-SM MD2DI-Security sendSEHRCertificate,

signPayload,

verifySignature,

createKeyStore,

loadKeyStore,

encrypt,

decrypt

HCP App T-D2D-E T-D2D-SM TD2DI-Security sendHCPCertificate,

signPayload,

verifySignature,

encrypt,

decrypt

R2D

Access

S-EHR App M-R2D-E M-R2D-SM MR2DI-Security login,

logout,

isAuthenticated,

Trusted

Proxy

Server

T-R2D-E P-R2D-SM TR2DI-Security authenticate,

metadata,

response

R2D

Backup

S-EHR App R2DWriter M-R2D-SM MR2DI-Security login,

logout,

isAuthenticated,

encrypt,

decrypt,

signPayload,

verifySignature,

 52

generateSymmetricKey

R2D

Emergen

cy

HCP App R2DReader T-R2D-SM TR2DI-Security encrypt,

decrypt,

login,

logout,

isAuthenticated

RDS

S-EHR App M-RDS M-RDS-SM MRDSI-Security signPayload,

verifySignature,

bobInitKeyPair,

bobKeyAgreement,

bobKeyAgreementFin,

bobPubKeyEnc,

generateSymmetricKey,

encrypt,

retrievePseudonym,

retrievePseudoIdentity,

login,

logout,

isAuthenticated,

setPseudo,

anonymizeData,

pseudonymizeData

RRC, CN S-RDS, IRS T-RDS-SM TRDSI-Security signPayload,

verifySignature,

aliceInitKeyPair,

aliceKeyAgreement,

alicePubKeyEnc,

aliceKeyAgreementFin,

generateSymmetricKey,

decrypt

Table 2 - InteropEHRate security libraries and remote APIs used by the InteropEHRate protocols

 53

Legacy Remote API Using Protocols Description

CAI
D2D, R2D, RDS The interface offered by the Certification Authorities

to retrieve digital certificates.

PPI RDS The interface offered by the Pseudonym Provider for

creating Pseudonyms.

eIDASI R2D Access, RDS The interface offered by the eIDAS Nodes for cross-

border identification and authentication of Citizens.

Table 3 - Legacy security remote APIs used by the InteropEHRate security protocols

 54

APPENDIX B
This section summarises the workflow of actions of the login Interface, including the exposed APIs of the

Trusted Proxy Server, that acts as a “bridge” between the Healthcare EHR and the eIDAS infrastructure for

providing a connection point to an eIDAS (proxy-based) node depending on specific Healthcare EHR

requirements for certifying a requesting user. This solution simplifies the secure interaction of any

Healthcare EHR, regardless of the programming language used for the EMR implementation, and the secure

exchange of all required information for the eIDAS-based user certification and authentication. In a

nutshell, the Trusted Proxy Server: a) enables Healthcare EHR entities to communicate with the eIDAS

infrastructure without using SAML 2.0 - a time consuming development process, and b) supports platform

independent EMRs since the communication is implementation-agnostic as it is based on REST APIs. The

Trusted Proxy Server, as its name suggests, acts as a proxy between the actual Healthcare EHR and the

eIDAS infrastructure. It handles all the interactions with the eIDAS, and requires from the Healthcare EHR to

receive the Country and the UserAttributes. At the end of an eIDAS authentication process, it receives the

identification attributes from the eIDAS Node and generates a signed JWT token containing those

attributes. Finally, the token is sent back to the Healthcare EHR for the subsequent user authentication

which, if successful, will result in the transmission of the healthcare records back to the user. The

Healthcare organisation is responsible for deploying this Trusted Proxy Server.

Figure 14 - eIDAS-based authentication flow

The high-level workflow of actions, as depicted in Figure 14, is summarized below.:

● Step 1: We assume an (already) eIDAS registered citizen that tries to get access to the R2D Access

Server in order to retrieve his/her healthcare records for the first time (login(CountryA)).

● Step 2: The S-EHR App performs an authentication request to Healthcare EHR including the

information regarding the Citizen’s Country. R2D Access library is responsible for exposing these

APIs as part of the Healthcare EHR.

 55

● Step 3: The Healthcare EHR redirects the authentication request to the Trusted Proxy Server

leveraging the exposed /authenticate REST endpoint. As aforementioned, the Trusted Proxy Server

is a trusted service implemented in the context of InteropEHRate for assisting the Healthcare EHR

developers to securely and efficiently handle the requests to/from the backend eIDAS

Infrastructure. The Trusted Proxy Server is responsible for constructing the SAML authentication

request and interacting with the nearest (proxy) eIDAS Node (eIDAS Connector) of the Healthcare

EHR country. Initially there is the exchange of some metadata and then the actual eIDAS request.

● Step 4: Then the eIDAS Connector redirects the request to the eIDAS node of the Country of Origin

of the User (eIDAS Proxy) - in the case that the country of origin is different to the country where

the request was made.

● Step 5: The output of the eIDAS authentication flow is an eIDAS SAML authentication response. The

User is authenticated using the eIDAS flow, while the user is redirected to the corresponding login

page of his home country IdP.

● Step 6: The eIDAS Node of the User Country of Origin (eIDAS Proxy) dispatches the process for

forwarding the eIDAS SAML authentication response to the eIDAS Node that initiated the

authentication request (eIDAS Connector).

● Step 7: Upon successful authentication, the eIDAS Node which receives the authentication

response then forwards it to the Trusted Proxy Server at the /returnPage endpoint. The Trusted

Proxy Server processes and decrypts the authentication response and generates a JWT token that

contains all the retrieved eIDAS attributes (plus the UUID of the session, generated at the beginning

of the process). The Trusted Proxy Server creates the appropriate identification assertions for the

eIDAS authenticated User, so that the Healthcare EHR can easily consume them. If an error occurs

during authentication, such as a failure in the authentication of the User to the IdP, the Trusted

Proxy Server handles it by displaying an appropriate message.

● Step 8: The Trusted Proxy Server provides the user info, through a signed JWT, to the Healthcare

EHR and the internal user validation process will check the UserAttributes provided. The Healthcare

EHR retrieves the JWT from the HTTP request, verifies its signature and authenticates the User or

handles the error. The healthcare organization will only need to interact with the exposed

endpoints of the Trusted Proxy Server to integrate the provided services with the eIDAS

infrastructure.

● Step 9: If the procedure is successful, the user can then access and download the requested

records provided by Healthcare EHR. Next time the user needs to authenticate himself though

eIDAS all previous steps will be performed again and there is no need for any token storage.

The implementation API of the Trusted Proxy Server is the following.

R2DAccess / Trusted Proxy Server API

POST /authenticate Handles the authentication request, constructs and propagates SAML 2.0

authRequest to the eIDAS infrastructure.

 56

GET /metadata Publish Healthcare EHR metadata to the eIDAS infrastructure.

POST /returnPage Process authResponse (as received from eIDAS Node). If the response is

successful, it provides authResponse translated from SAML 2.0 to JSON, and

redirects to Healthcare EHR along with a JWT token. If the response fails

generates a failure report.

