
 

 

 InteropEHRate project has received funding from the European Union’s Horizon 2020 

research and innovation programme under grant agreement No 826106 

 

 

 

 

D4.13 

Libraries for remote and D2D HR exchange - V2 

ABSTRACT 

This deliverable describes a demonstration of the second version of the libraries offered by the 

InteropEHRate Framework as a reference implementation of the device-to-device (D2D) and the remote-to-

device (R2D) health record exchange protocols. It also outlines for these libraries their description 

regarding their current version and the used licences, as well as specific information regarding their 

development, followed by specific guidelines regarding the installation and the usage of these libraries, 

through a detailed guide.  

Delivery Date 8th April 2021  

Work Package WP4 

Task T4.5 

Dissemination Level Public 

Type of Deliverable Demonstrator 

Lead partner UPRC 

  

 

 

 



InteropEHRate deliverable  D4.13: Libraries for remote and D2D HR exchange - V2 

 ii  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



InteropEHRate deliverable  D4.13: Libraries for remote and D2D HR exchange - V2 

 iii  
 

CONTRIBUTORS 

 Name  Partner 

Contributors Thanos Kiourtis, Argyro Mavrogiorgou, 

Charis Tsigkounis 

UPRC 

Contributors Alessio Graziani ENG 

Contributors Marti Marot A7 

Contributors Nicu Jalba SIVECO 

Contributors Chrysostomos Symvoulidis BYTE 

Reviewers N/A N/A 

 

LOG TABLE 

Version Date Change Author  Partner 

0.1 2021-01-21 Provided initial ToC Thanos Kiourtis, 

Argyro 

Mavrogiorgou 

UPRC 

0.2 2021-03-10 Provided input for the S-EHR 

side and HCP-side D2D 

Libraries 

Thanos Kiourtis, 

Charis Tsigkounis, 

Martin Marot, Nicu 

Jalba 

UPRC, A7, 

SIVECO/SIMAVI 

0.3 2021-03-19 Finalized Section 1 and Section 

2 

Thanos Kiourtis, 

Argyro 

Mavrogiorgou 

UPRC 

0.4 2021-03-24 Provided input for the R2D 

Access Library 

Alessio Graziani ENG 

0.5 2021-03-26 Provided input for the R2D 

Backup and R2D Emergency 

Libraries  

Chrysostomos 

Symvoulidis 

BYTE 

0.6 2021-03-26 Sent for quality check Thanos Kiourtis, 

Argyro 

UPRC 



InteropEHRate deliverable  D4.13: Libraries for remote and D2D HR exchange - V2 

 iv  
 

Mavrogiorgou 

1.0 2021-03-31 Quality check Argyro 

Mavrogiorgou 

UPRC 

VFinal 2021-04-07 Final check and submission Laura Pucci ENG 

 

  



InteropEHRate deliverable  D4.13: Libraries for remote and D2D HR exchange - V2 

 v  
 

ACRONYMS 

Acronym Term and definition 

D2D Device-to-Device 

R2D Remote-to-Device 

HCP Healthcare Practitioner 

HR Health Record 

S-HER Smart Electronic Health Record 

FHIR Fast Healthcare Interoperability Resources 

SW Software 

IDE Integrated Development Environment 

 

  



InteropEHRate deliverable  D4.13: Libraries for remote and D2D HR exchange - V2 

 vi  
 

TABLE OF CONTENT 

 
1. INTRODUCTION ......................................................................................................................................... 1 

1.1. Scope of the document ..................................................................................................................... 1 

1.2. Intended audience ............................................................................................................................. 1 

1.3. Structure of the document ................................................................................................................ 1 

1.4. Updates with respect to previous version (if any) ............................................................................ 1 

2. SW DESCRIPTION ....................................................................................................................................... 3 

2.1. D2D Libraries ..................................................................................................................................... 3 

2.1.1. S-EHR side D2D Library .............................................................................................................. 3 

2.1.2. HCP side D2D Library ................................................................................................................. 3 

2.2. R2D Libraries ...................................................................................................................................... 4 

2.2.1. R2D Access Library ..................................................................................................................... 4 

2.2.2. R2D Backup Library .................................................................................................................... 5 

2.2.3. R2D Emergency Library.............................................................................................................. 6 

3. OVERVIEW ................................................................................................................................................. 7 

3.1. D2D Libraries ..................................................................................................................................... 7 

3.1.1. S-EHR side D2D Library .............................................................................................................. 7 

3.1.2. HCP side D2D Library ................................................................................................................. 9 

3.2. R2D Libraries .................................................................................................................................... 13 

3.2.1. R2D Access Library ................................................................................................................... 13 

3.2.2. R2D Backup Library .................................................................................................................. 16 

3.2.3. R2D Emergency Library............................................................................................................ 18 

 

 
 

LIST OF TABLES 

Table 1 - S-EHR side D2D Library description 

Table 2 - HCP side D2D Library description 

Table 3 - R2D Access Library description 

Table 4 - R2D Backup Library description 

Table 5 - R2D Emergency Library description 

      



InteropEHRate deliverable  D4.13: Libraries for remote and D2D HR exchange - V2 

 1  
 

 

1. INTRODUCTION 
 

1.1. Scope of the document 
The main goal of this document is to deliver a demonstration of the second version of the libraries offered 

by the InteropEHRate Framework as a reference implementation of the device-to-device (D2D) and the 

remote-to-device (R2D) health record exchange protocols. In more detail, the current document outlines 

for these libraries their description regarding their current version and the used licences, as well as specific 

information regarding their development (e.g. programming languages, supported platforms, etc). 

Moreover, this document includes specific guidelines regarding the installation and the usage of these 

libraries, through a detailed guide. It should be noted that this document is a SW accompany report, a 

pointer to the actual deliverable, regarding the design of the libraries for remote and D2D HR exchange 

[D4.5]. 

1.2. Intended audience 
The current document is mainly intended for developers and manufacturers who are interested in 

designing and building either S-EHR applications or HCP applications, and desire to exploit and reuse either 

the D2D or the R2D or both these two functionalities offered by the InteropEHRate framework, in the 

context of their applications. Apart from that, the document is intended for researchers and developers as 

well, as they may be interested in installing and using the designed libraries. 

1.3. Structure of the document 
The current document is organized in the following Sections: 

● Section 1 (current section) introduces the overall concept of the document, defining its scope, 

intended audience, and relation to the other project tasks and reports. 

● Section 2 outlines the description of the software regarding the offered libraries, including details 

such as their licences, their programming languages, and their supported platforms. 

● Section 3 describes for each library an installation guide, as well as a user guide. 

 

1.4. Updates with respect to previous version (if any) 
With regards to the previous version of the deliverable (D4.12 Libraries for remote and D2D HR exchange - 

V2 [D4.12]), the following changes have been performed for each separate section of the current 

document. 

 

Section 1 - Introduction: 

● Updated the scope of the document 

 

Section 2 - SW DESCRIPTION: 

● Section D2D Libraries 

○ Updated the SW version of the S-EHR side D2D library. 

○ Updated the SW version of the HCP side D2D library. 

● Section R2D Libraries 

○ Updated the SW version of the MR2D library. 

 



 

 2  
 

Section 3 - OVERVIEW: 

● Section D2D Libraries 

○ S-EHR side D2D library: 

■ Added the Nexus repository to publish and receive versioned applications as well 

as the way that the S-EHR side library is uploaded on Nexus.  

■ The version of the S-EHR side D2D library has been updated to the current version. 

■ Updated the operations of the public interface D2DHRExchangeListeners. 

■ Updated the type of the files that the operations of ConnectedThread class can 

send. 

○ HCP side D2D library: 

■ Added the Nexus repository to publish and receive versioned applications as well 

as the way that the HCP side library is uploaded on Nexus and the integration 

steps. 

■ Updated the main flow implemented in HCP app using the D2D library. 

■ Updated the functionalities of CurrentD2DConnection class. 

● Section R2D Libraries 

○ R2D Access library: 

■ Added support for the download of Laboratory Reports. 

■ Added support for the download of Diagnostic Reports with embedded medical 

images. 

■ Added support for the download of Diagnostic Reports referring to a DICOM study. 

○ R2D Backup library: 

■ This section is a new section that has been provided to D4.13 

○ R2D Emergency library: 

■ This section is a new section that has been provided to D4.13 

 

 

  



 

 3  
 

2. SW DESCRIPTION 

 

2.1. D2D Libraries 
 

2.1.1. S-EHR side D2D Library 

  

SW TITLE Mobile D2D HR Exchange (M-D2D-E) 

SW VERSION 0.3.0 

LICENCES AND PATENTS Apache License 

PROGRAMMING LANGUAGES Java SE 8.0 

SUPPORTED PLATFORM(s) Android (5.0 - Current Version) 

SOURCE CODE http://iehrgitlab.ds.unipi.gr/interopehrate/s-ehr-mobile-

app/d2d-hr-exchange 

EXECUTABLE N.A. 

Table 1 - S-EHR side D2D Library description 

 

2.1.2. HCP side D2D Library 

  

SW TITLE Terminal D2D HR Exchange (T-D2D-E) 



 

 4  
 

SW VERSION 0.3.0 

LICENCES AND PATENTS Apache License 

PROGRAMMING LANGUAGES Java SE 8.0 

SUPPORTED PLATFORM(s) Windows OS 

SOURCE CODE http://iehrgitlab.ds.unipi.gr/interopehrate/reference-hcp-

app/terminal-d2d-hr-exchange 

EXECUTABLE N.A. 

Table 2 - HCP side D2D Library description 

 

2.2. R2D Libraries 
 

2.2.1. R2D Access Library 

  

SW TITLE Mobile R2D Exchange (M-R2D-E) 

SW VERSION 0.3.0 

LICENCES AND PATENTS Apache License 

PROGRAMMING LANGUAGES Java SE 8.0 



 

 5  
 

SUPPORTED PLATFORM(s) Android (from API Level 14 – 15, named Ice Cream Sandwich) 

SOURCE CODE http://iehrgitlab.ds.unipi.gr/interopehrate/s-ehr-mobile-

app/r2d-hr-exchange 

EXECUTABLE N.A. 

Table 3 - R2D Access Library description 

 

2.2.2. R2D Backup Library 

  

SW TITLE R2D Backup  

SW VERSION 0.1.0 

LICENCES AND PATENTS Apache License 

PROGRAMMING LANGUAGES Java SE 8.0 

SUPPORTED PLATFORM(s) Android  

SOURCE CODE http://iehrgitlab.ds.unipi.gr/interopehrate/s-ehr-mobile-

app/r2d-backup 

EXECUTABLE N.A. (imported in a project as a library) 

Table 4 - R2D Backup Library description 

 



 

 6  
 

2.2.3. R2D Emergency Library 

  

SW TITLE R2D Emergency 

SW VERSION 0.0.1 

LICENCES AND PATENTS Apache License 

PROGRAMMING LANGUAGES Java SE 8.0 

SUPPORTED PLATFORM(s) Any Device that can run Java applications 

SOURCE CODE http://iehrgitlab.ds.unipi.gr/interopehrate/reference-hcp-

app/r2d-emergency 

EXECUTABLE N.A. (imported in a project as a library) 

Table 5 - R2D Emergency Library description 

  



 

 7  
 

3. OVERVIEW 
 

3.1. D2D Libraries 
 

3.1.1. S-EHR side D2D Library 

The current release of the library (i.e. M-D2D-E), contains all the operations that are needed from the side 

of the S-EHR application developer to initially interact with the library and finally with the HCP application. 

This library contains different operations that have to be invoked in a specific sequence for implementing 

the purposes of the D2D protocol, regarding the S-EHR application. This library is a Java-based component 

that can be nested in any Android application. It offers a set of Java operations for establishing a D2D 

connection, and allowing a mobile app of a Citizen to exchange her personal health records using the D2D 

protocol. More details regarding these operations can be found in deliverable [D4.5]. 

3.1.1.1. Installation guide 

The installation guide of the D2D library inside the S-EHR app contains necessary information for the 

process that has to be followed in order to add the library to the S-EHR app Android project, and make sure 

that every component of the S-EHR app is able to use the library. This guide is used to install the version of 

the library released in March 2021, and may be no longer valid for more recent versions. The only 

requirement for this process is for the developer to have an Android project application running with the 

min-sdk version properties upper or equals to 15. In order to upload the libraries so that they can be used 

in other projects, the Nexus repository is being used as an open source repository where can be published 

and retrieved versioned applications, as well as their dependencies [Nexus]. 

Uploading the S-EHR side D2D library on Nexus 

1. For the first time, in Android Studio, go to File -> Settings -> Tools -> Terminal and change the ‘Shell 

path’ to the directory of installed ‘git bash’. 

2. Go to build.gradle (Module: md2de) file and change the version of the library.  

3. Change the Build Variants from ‘debug’ to ‘release’. 

4. In the toolbar select Build -> Make module ‘md2de’. 

5. Open the terminal of Android Studio and execute the command ‘./gradlew:md2de:publish’. 

6. Return the Build Variants from ‘release’ to ‘debug’.  

Installation steps of the S-EHR side D2D library: 

1. Go to the gradle file of the project for using the libraries on all projects, or in the module one for 

using  libraries in a specific module. Add the following lines of code inside the repository section: 

 repositories { 
google() 

jcenter() 

maven { 

         url 'interopehrate-nexus-url' 

         content { 

               includeGroup 'eu.interopehrate' 

         } 

} 



 

 8  
 

} 

           By adding this code, someone adds to gradle a new repository to retrieve libraries, referring to the one 

created specifically for the InteropEHRate project. 

2. After adding to gradle the repository, add the following code to the dependencies section: 

implementation(group:'eu.interoperhate', name:'md2de', version: '0.3.0') 

3. Refresh the gradle project. 

 

3.1.1.2. User guide 

This user guide is available for the version 0.3.0 of the S-EHR side D2D library. The main flow of the 

functionality of this library is the following: 

1. Open the Bluetooth connection with the HCP application, using the Bluetooth MAC address of the 

HCP app running machine. In the case of the S-EHR app, this information is contained in a QR code 

provided by the HCP app. In more detail, the bluetooth connection is triggered with the HCP 

application using the operation broadcastConnection provided by the 

BluetoothConnection class. This will take in parameter the Bluetooth MAC address of the 

HCP app running machine, combined with two listeners. The first one is the 

D2DHRExchangeListeners and will be explained afterwards, while the second one is a Listener 

that is used to detect when the connection is closed. 

public ConnectedThread broadcastConnection(String address, 

D2DHRExchangeListeners listeners, D2DConnectionListeners 

listenersConnection) 

 

This operation returns the thread that will contain the read process, and all the operations used to 

send information to the HCP app. In the S-EHR app, the communication with the D2D library is 

regrouped into a Service class, which is called BluetoothService. 

Regarding the following user guide, it should be mentioned that the first Listener of the 

broadcastConnection operation is the D2DHRExchangeListeners. This listener 

regroups all the operations that will be used by the connection thread to do the interaction 

between HCP application and S-EHR application when the bluetooth connection is activated. 

  public interface D2DHRExchangeListeners { 

void onHealthOrganizationIdentityReceived(Practitioner var1); 

void onConsentRequested(String var1); 

void onPrescriptionReceived(Bundle var1); 

void onVitalSignsReceived(Bundle var1); 

void onMedicalDocumentRequestReceived(String var1, String var2, 

String var3); 

} 

 

2. Once the connection is accepted, identity information is being exchanged for: 

○ Sending information to the citizen from the S-EHR app: Using the 

sendPersonalIdentity operation provided by the ConnectedThread class, the 

parameter of this operation is a Patient object from the FHIR library. 



 

 9  
 

○ Receiving information from the HCP app: In order to receive the HCP identification 

information, this is done through the D2DHRExchangeListeners, that returns a 

Practitioner object from the FHIR library. 

3. Once the involved parties are identified, the consent result is being provided. This is done using the 

sendConsentAnswer operations provided by the ConnectedThread class, taking as a 

parameter a String. 

4. The next step includes the sending of Health Data, of the citizen by using each operation provided 

by the ConnectedThread class, taking as a parameter a Bundle object from the FHIR library. 

These operation can send : 

● Patient Summary 

● Laboratory Results 

● Medication Request 

● Image Report 

● Pathology History Information 

● Vital Signs 

● Medical Document 

5. The step of health data reception deals with receiving health data through the operations provided 

by the D2DHRExchangeListeners. Τhe data that can be omitted are: 

● Prescription 

● Vital Signs 

● Request for Medical Document 

6. The citizen can close the Bluetooth connection. The Bluetooth connection is closed using the 

BluetoothConnection.closeConnection operation. 

 

3.1.2. HCP side D2D Library 

The current release of the library contains all the operations that are needed from the side of the HCP 

application developer to interact with the library and finally with the S-EHR application. This library 

contains different operations that have to be invoked in a specific sequence for implementing the purposes 

of the D2D protocol, regarding the HCP application. This library is a Java based component that can be 

embedded in any Java based application. It offers a set of operations for establishing a D2D connection and 

enabling the application used by an HCP to send and receive data of a Citizen near her. More details 

regarding these operations can be found in deliverable [D4.5]. 

3.1.2.1. Installation guide 

The installation guide of the D2D library inside the HCP contains necessary information for the process that 

has to be followed in order to  integrate the library into the HCP Java project and make sure that every 

component of the HCP is able to use the library. This guide is used to  integrate the version of the library 

released in March 2021 and may be no longer valid for more recent versions. The only requirement for this 

process is for the developer to have access to the repository where the library is uploaded. There is a Nexus 

repository used in the project, and as a result the integration of the libraries is easier because it is just 

needed to add the necessary dependencies in the pom.xml file in order to fetch the jar files. 

Uploading the HCP side D2D library on Nexus 

1. For the first time, in Eclipse, go to ${user.home}/.m2/settings.xml and add the following lines of 

code: 



 

 10  
 

<?xml version="1.0" encoding="UTF-8"?> 

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0 

http://maven.apache.org/xsd/settings-1.0.0.xsd"> 

   <localRepository /> 

   <interactiveMode /> 

   <usePluginRegistry /> 

   <offline /> 

   <pluginGroups /> 

   <servers> 

      <server> 

         <id>nexus</id> 

         <username>$username</username> 

         <password>$password</password> 

      </server> 

   </servers> 

   <mirrors /> 

   <proxies /> 

   <profiles /> 

   <activeProfiles /> 

</settings>  

2. Go to pom.xml and change the version of the library. 

3. For the first time right click on pom.xml Run us -> Run configurations. Right click on Maven build -> 

New Configuration. Select the base directory and in field ‘Goals’ write ‘package’ and press Apply. 

4. Go again to Maven build -> New Configuration. Select the base directory and in field ‘Goals’ write 

‘clean deploy’ and press Apply. 

5. Choose the two configurations and press Run. 

  Integration steps of the HCP side D2D library: 

1. Include the necessary dependency for the D2D library jar file inside the HCP App project. 

2. Add InteropEHRate Nexus Repository as source of artefacts for the HCP App project. 

A future plan of extensibility for the HCP side D2D library will include the conversion to an open source 

approach. In this case, the installation process would be different only regarding the way of cloning the 

project, since the location of the library would need to change if the open source approach would be taken. 

3.1.2.2. User guide 

This user guide is available for the version 0.3.0 of the HCP side D2D library. Shortly, the main flow 

implemented in HCP app using D2D library is the following: 

1. Open the Bluetooth connection using the BluetoothConnection.listenConnection 

operation. 

public ConnectedThread listenConnection(D2DHRExchangeListeners 

listeners,D2DConnectionListeners listenersConnection, String 

structureDefinitionsPath) 

The first listener of listenConnection is D2DHRExchangeListeners which allows a Health 

Practitioner to know when incoming data from the citizen has been received. 



 

 11  
 

public interface D2DHRExchangeListeners { 

void onPersonalIdentityReceived(Patient var1); 

void onPatientSummary(Bundle var1); 

void onNoConformantPatientSummaryReceived(); 

void onPrescriptionReceived(Bundle var1); 

void onNoConformantPrescriptionReceived(); 

void onLaboratoryResultsReceived(Bundle var1); 

void onImageReportReceived(Bundle var1); 

void onPathologyHistoryInformationReceived(Bundle var1); 

void onMedicalDocumentConsultationReceived(Bundle var1); 

void onVitalSignsReceived(Bundle var1); 

void onConsentAnswerReceived(String var1); 

} 

2. Afterwards, as soon as the connection will be accepted, information about the current practitioner 

can be sent using the ConnectedThread.sendPersonalIdentity operation. Moreover, in 

order to send the digital identity of the current practitioner it must be used the 

ConnectedThread.sendHCPCertificate operation. 

3. The next step is to create and send the consent to the citizen in order to get accepted and signed 

using the ConnectedThread.getSignedConsent operation. 

4. The HCP can receive the signed consent from the citizen by implementing the listener 

onConsentAnswerReceived(String var1) provided by the interface 

D2DHRExchangeListeners.  

5. What is more, the HCP can receive EHRs from the S-EHR by implementing the listeners provided by 

the interface D2DHRExchangeListeners. The EHRs that can be omitted are: 

● Patient Summary 

● Laboratory Results 

● Medication Request 

● Image Report 

● Pathology History Information 

● Vital Signs 

● Medical Document 

6. Send Evaluation data, using the  operations provided by the ConnectedThread class, such as: 

● Prescription 

● Vital signs 

● Request for Medical Document 

7. The D2D library validates the resources coming on the HCP automatically and in the case that they 

are not conformant the Bluetooth connection will close using the 

BluetoothConnection.closeConnection operation. 

Regarding the aforementioned operations, the functionality of the D2D library was embedded by the 

developers of the HCP App inside a class called CurrentD2DConnection. This class offers the following 

functionalities as public operations to the rest of the HCP app components: 

● open(): Opens the Bluetooth connection. 

● close(): Closes the Bluetooth connection. 

● connectionState(): Returns the connection state (ON, OFF, or PENDING_DEVICE). 



 

 12  
 

● Also it provides implementations for the listeners dedicated to managing the connection 

and exchange of medical information, namely the D2DConnectionListeners and 

D2DHRExchangeListeners. 

  



 

 13  
 

3.2. R2D Libraries 
 

3.2.1. R2D Access Library 

The subject of the current release is the version 0.3.0 of the Android library implementing an R2D client. 

This library enables client apps to use R2D without specific knowledge of technical details of the R2D 

protocol. The library is compatible with the Android environment, it has been developed using Java 

Technology and is released as an Android Archive format (.AAR extension). The file is named: mr2d-

0.3.0.aar. 

This version of the library provides several operations for allowing a client app to download the following 

type of health data:  

● Patient Summary: in FHIR format according to International Patient Summary specifications defined 

by HL7 [FHIR IPS]. 

● Laboratory Reports: represented with the FHIR resource named DiagnosticReport compliant to the 

specific profile defined by the InteropEHRate project. 

● Diagnostic Reports containing images: represented with the FHIR resource named DiagnosticReport 

compliant to the specific profile defined by the InteropEHRate project. 

● Prescriptions: represented with the FHIR resource named MedicationRequest compliant to the 

specific profile defined by the InteropEHRate project. 

● Vital Signs: represented with the FHIR resource named Observation compliant to the specific profile 

defined by the InteropEHRate project. 

3.2.1.1. Installation guide 

The process to integrate the MR2DA library is the same explained in Section 3.1.1.1, where the difference 

lies in the implementation line given to the second point, regarding the adding of the gradle to the 

repository. Hence, for the MR2DA, the following line needs to be inserted in the gradle file: 

implementation(group:'eu.interoperhate', name:'mr2d', version: '0.3.0') 

If the development team importing the library is using Maven instead of Gradle, the same dependency 

must be expressed with the following Maven syntax: 

<dependency> 

 <groupId>eu.interopehrate</groupId> 

 <artifactId>mr2d</artifactId> 

 <version>0.3.0</version> 

</dependency> 

 

3.2.1.2. User guide 

Using the MR2DA library means obtaining an instance of the class MR2DA and then invoking its methods to 

download health data of the authenticated citizen. To obtain an instance of MR2DA, developers must use 

the static method create() of the class MR2DFactory, as shown in the following example:  

MR2DA mr2da = MR2DAFactory.create("http://hospitalOne/R2D/fhir/"); 



 

 14  
 

The create() method takes as input parameter the endpoint of the R2D server that it must connect to. If the 

S-EHR app needs to connect to more than one R2D server, it must creates one MR2DA instance for every 

R2D server:   

MR2DA mr2daOne = MR2DAFactory.create("http://hospitalOne/R2D/"); 

MR2DA mr2daTwo = MR2DAFactory.create("http://hospitalTwo/R2D/"); 

In more detail, the MR2DA interface provides methods for executing searches of health data belonging to 

the authenticated citizen. It is possible to search over the entire set of of defined data type or it is possible 

to specify one or more specific type of data as subject of the search: 

● getResources: Returns all the health data of whatever type of the citizen starting from a date. 

● getResourcesByCategory: Returns all the health data of a specific type. Several additional 

parameters allow to add more filter criteria to the search to restrict the results. 

● getResourcesByCategories: Returns all the health data of one or more specific type 

provided as argument, starting from a date. 

● getMostRecentResources: Returns the most recent n instances of an health data type sorted 

by descending date, so that the most recent are on top. 

● getResourceById: Return a specific health data instance identified by its ID. 

● getPatientSummary: one specific method to return this particular kind of health data. This 

special method avoid to the client the several queries needed to search and retrieve an instance of 

Patient Summary. 

In the following paragraphs some code samples to show how to use the several methods of the library. 

Patient Summary 

Bundle psBundle = (Bundle)mr2da.getPatientSummary(); 

Composition ps = (Composition)psBundle.getEntryFirstRep().getResource(); 

 
Search of Diagnostic Reports from a certain date 

GregorianCalendar gc = new GregorianCalendar(2019, Calendar.JANUARY, 01); 

mr2da.getResourcesByCategory(FHIRResourceCategory.DIAGNOSTIC_REPORT, 

   gc.getTime(), false); 

 

Search of Diagnostic Reports and Observations from a certain date 

GregorianCalendar gc = new GregorianCalendar(2019, Calendar.JANUARY, 01); 

mr2da.getResourcesByCategories(gc.getTime(), false, 

   FHIRResourceCategory.DIAGNOSTIC_REPORT,  

   FHIRResourceCategory.OBSERVATION); 

 

 

Search of Diagnostic Reports by code 



 

 15  
 

mr2da.getResourcesByCategory(FHIRResourceCategory.DIAGNOSTIC_REPORT, 

   null, "http://loinc.org|30954-2", null, false); 

Search of DocumentReference by code (Discharge Report code) 

mr2da.getResourcesByCategory(FHIRResourceCategory.DOCUMENT_REFERENCE, 

   null, "http://loinc.org|18842-5", null, false); 

Search of Diagnostic Reports by Sub-category 

mr2da.getResourcesByCategory(FHIRResourceCategory.DIAGNOSTIC_REPORT, 

   "LAB", null, null, false); 

Search of structured and unstructured (document) Image Reports from a certain date 

GregorianCalendar gc = new GregorianCalendar(2015, Calendar.JANUARY, 01); 

mr2da.getResourcesByCategory(DocumentCategory.IMAGE_REPORT, 

    gc.getTime(), false); 

Search of structured and unstructured (document) Laboratory Reports from a certain date 

GregorianCalendar gc = new GregorianCalendar(2015, Calendar.JANUARY, 01); 

mr2da.getResourcesByCategory(DocumentCategory.LABORATORY_REPORT, 

    gc.getTime(), false); 

All these operations invoke remote services, consequently, they cannot be used in the main thread of an 

Android application. They must be executed in AsyncTask, or in a separate Thread specially created. 

Moreover, the following permissions must be given to the app:  

● <uses-permission android:name="android.permission.INTERNET" /> 

● <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" /> 

 

  



 

 16  
 

3.2.2. R2D Backup Library 

The current release of the R2DBackup library, contains all the operations that are needed from the side of 

the S-EHR application developer to initially interact with a S-EHR Cloud provider in order for a citizen to 

back up their encrypted EHR to this S-EHR Cloud. This library contains different operations that have to be 

invoked in a specific sequence for implementing the purposes of the R2D Backup protocol, regarding the S-

EHR application. This library is a Java-based component that can be nested in any Android application. The 

library is released as an Android Archive format (.aar). It offers a set of Java operations for establishing the 

connection to the S-EHR Cloud and allowing a mobile app of a Citizen to upload and download their 

personal health records using the R2D Backup protocol. More details regarding these operations can be 

found in deliverable [D4.2]. 

3.2.2.1. Installation guide 

The process of integrating the R2D-Backup library is again, similar to the process explained in the previous 

Installation guide subsections. In case a gradle project is created, the following line needs to be inserted in 

the dependencies section of the build.gradle file: 

implementation(group:'eu.interopehrate', name:'mr2dbackup', version: '0.1.0') 

If the development team importing the library is using Maven instead of Gradle, the same dependency 

must be expressed with the following Maven syntax: 

<dependency> 

<groupId>eu.interopehrate</groupId> 

<artifactId>mr2dbackup</artifactId> 

<version>0.1.0</version> 

</dependency> 

 

3.2.2.2. User guide 

Using the MR2DBackup library means obtaining an instance of the class MR2DBackup and then invoking 

its methods to upload encrypted health data to the S-EHR Cloud, as well as downloading and decrypting 

such data from it. How to obtain an instance of MR2DBackup, is shown in the following example: 

 MR2DBackup mr2dbackup = new MR2DBackup(); 

In addition, an instance of the SEHRCloudClient class needs to be instantiated that is responsible for 

the connection to the preferred S-EHR Cloud provider of the citizen, as shown in the code snippet below: 

SEHRCloudInterface cloudInterface = 

SEHRCloudClient.getClient().create(SEHRCloudInterface.class); 

The R2DBackup library provides methods for uploading encrypted health data to the S-EHR Cloud, 

downloading and decrypting this data to the S-EHR App, providing a list of the buckets created on the S-EHR 

Cloud that are related to the citizen, as well as providing a list of objects (i.e. data is stored as Objects in the 

S-EHR Cloud) in a specific bucket. 



 

 17  
 

The exact methods provided by the R2DBackup library are listed below: 

● create: Encrypts (using the R2D Encrypted Communication library [D3.5]) and uploads health 

data to the S-EHR Cloud. 

● get: Downloads and decrypts (using the R2D Encrypted Communication library [D3.5]) health data 

that is already uploaded on the S-EHR Cloud. If the data is not found an error message is received. 

● listBuckets: returns a list of the buckets that are related to a Citizen. 

● listObjects: returns a list of objects in a specific bucket. 

Since the R2DBackup works with encrypted documents it can support the following type of health data: 

● Patient Summary: in FHIR format according to International Patient Summary specifications defined 

by HL7 [FHIR IPS]. 

● Laboratory Reports: represented with the FHIR resource named DiagnosticReport compliant to the 

specific profile defined by the InteropEHRate project. 

● Diagnostic Reports containing images: represented with the FHIR resource named DiagnosticReport 

compliant to the specific profile defined by the InteropEHRate project. 

● Prescriptions: represented with the FHIR resource named MedicationRequest compliant to the 

specific profile defined by the InteropEHRate project. 

● Vital Signs: represented with the FHIR resource named Observation compliant to the specific profile 

defined by the InteropEHRate project. 

In the following code samples the way these methods are used is presented: 

 Create 

mr2dbackup.create(ehrBundle, DocumentCategory.PATIENT_SUMMARY, authToken, 

symKey, new R2DBackup.MR2DBackupI(){}); 

Get 

mr2dbackup.get(DocumentCategory.PATIENT_SUMMARY, authToken, symKey, new 

R2DBackup.MR2DBackupI(){}); 

List Buckets 

mr2dbackup.listBuckets(authToken, symKey, new R2DBackup.MR2DBackupI(){}); 

List Objects 

mr2dbackup.listObjects(authToken, bucket, new R2DBackup.MR2DBackupI(){}); 

The abovementioned operations require the use of the internet, since they invoke remote services such as 

a S-EHR Cloud provider. For this reason, the permission to use the internet must be given to the app by 

adding the line below in the AndroidManifest.xml file of the project:   

● <uses-permission android:name="android.permission.INTERNET" /> 



 

 18  
 

3.2.3. R2D Emergency Library 

The current release of the R2DEmergency library, contains all the operations that are needed from the side 

of the HCP application developer to initially interact with a S-EHR Cloud provider in order for an HCP to 

grant access to a citizen’s health data during an emergency situation. This library contains different 

operations that have to be invoked in a specific sequence for implementing the purposes of the R2D 

Emergency protocol, regarding the HCP application. This library is a Java-based component that can be 

nested in any Java application. The library is released as a Java Archive format (.jar). It offers a set of Java 

operations for establishing the connection to the S-EHR Cloud and allowing an HCP using the HCP app to 

download a Citizen’s personal health records and decrypt them using the R2D Emergency protocol. More 

details regarding these operations can be found in deliverable [D4.2]. 

3.2.3.1. Installation guide 

The process of integrating the R2DEmergency library is again, similar to the process explained in the 

previous Installation guide subsections. In case a gradle project is created, the following line needs to be 

inserted in the dependencies section of the build.gradle file: 

implementation(group:'eu.interopehrate', name:'R2Demergency', version: '0.0.1') 

If the development team importing the library is using Maven instead of Gradle, the same dependency 

must be expressed with the following Maven syntax: 

<dependency> 

<groupId>eu.interopehrate</groupId> 

<artifactId>r2dEmergency</artifactId> 

<version>0.0.1</version> 

</dependency> 

 
3.2.3.2. User guide 

Using the R2DEmergency library means obtaining an instance of the class R2DEmergencyI and then 

invoking its methods to download and decrypt encrypted health data from the S-EHR Cloud. To obtain an 

instance of R2DEmergencyI, developers must use the class R2DEmergencyFactory, as shown in the 

following example: 

R2DEmergencyI r2demergency = R2DEmergencyFactory.create(); 

The R2DEmergency library provides methods for requesting access to a Citizen’s health information stored 

in the S-EHR Cloud, and downloading such information from the S-EHR Cloud. 

The exact methods provided by the R2D Backup library are listed below:  

● get: Download and decryption (using the R2D Encrypted Communication library [D3.5]) of health 

data that is already uploaded on the S-EHR Cloud. If the data is not found an error message is 

received. 



 

 19  
 

● listBuckets: returns a list of the buckets that are related to a Citizen.Specification of data 

encryption mechanisms for mobile and web applications 

● listObjects: returns a list of objects in a specific bucket. 

Since the R2D Emergency works with encrypted documents it can support the following type of health data:  

● Patient Summary: in FHIR format according to International Patient Summary specifications defined 

by HL7 [FHIR IPS]. 

● Laboratory Reports: represented with the FHIR resource named DiagnosticReport compliant to the 

specific profile defined by the InteropEHRate project. 

● Diagnostic Reports containing images: represented with the FHIR resource named DiagnosticReport 

compliant to the specific profile defined by the InteropEHRate project. 

● Prescriptions: represented with the FHIR resource named MedicationRequest compliant to the 

specific profile defined by the InteropEHRate project. 

● Vital Signs: represented with the FHIR resource named Observation compliant to the specific profile 

defined by the InteropEHRate project. 

In the following code samples the way these methods are used is presented: 

Get (Patient Summary) 

r2dEmergency.get(emergencyToken, DocumentCategory. PATIENT_SUMMARY); 

Get (Laboratory Report) 

r2dEmergency.get(emergencyToken, DocumentCategory.LABORATORY_REPORT); 

Get (Medication request) 

r2dEmergency.get(emergencyToken, FHIRResourceCategory.MEDICATION_REQUEST); 

List Buckets 

r2dEmergency.listBuckets(emergencyToken); 

List Objects  

r2dEmergency.listObjects(emergencyToken, bucket); 

The abovementioned operations require the use of the internet, since they invoke remote services such as 

a S-EHR Cloud provider. For this reason, the permission to use the internet must be given to the app by 

adding the line below in the AndroidManifest.xml file of the project:  

● <uses-permission android:name="android.permission.INTERNET" /> 

  



 

 20  
 

REFERENCES 

● [D3.5] InteropEHRate Consortium, Specification of data encryption mechanisms for mobile and 

web applications v1, 2020. www.interopehrate.eu/resources 

● [D4.2] InteropEHRate Consortium, Specification of remote and D2D protocol and APIs for HR 

exchange V2, 2020. www.interopehrate.eu/resources 

● [D4.5] InteropEHRate Consortium, Design of libraries for remote and D2D HR exchange, 2019. 

www.interopehrate.eu/resources 

● [D4.12] InteropEHRate Consortium, Libraries for remote and D2D HR exchange, 2019. 

www.interopehrate.eu/resources 

● [FHIR IPS] International Patient Summary Implementation Guide. Web site: 

https://build.fhir.org/ig/HL7/fhir-ips/ 

● [Nexus] Nexus Repository OSS - Software Component Management. Web site: 

https://www.sonatype.com/nexus/repository-oss?topnav=true 

 

http://www.interopehrate.eu/resources
http://www.interopehrate.eu/resources
http://www.interopehrate.eu/resources
http://www.interopehrate.eu/resources
https://build.fhir.org/ig/HL7/fhir-ips/
https://build.fhir.org/ig/HL7/fhir-ips/
https://build.fhir.org/ig/HL7/fhir-ips/
https://www.sonatype.com/nexus/repository-oss?topnav=true

