

 InteropEHRate project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 826106.

D4.10

Design of library for health data sharing

for research - V1

ABSTRACT

This deliverable describes the initial version of the design of the libraries offered by the InteropEHRate

Framework as a reference implementation of the protocol and services for citizen-driven research data

sharing. A detailed description is provided for the libraries, including their interactions with each other and

the applications participating in the data sharing process, namely the Central Node of the Research

Network, Research Centres participating in research studies, and S-EHR Apps running on the mobile devices

of citizens. The current deliverable is intended for developers and manufacturers that are interested in

designing and building either mobile or web applications that aim at exploiting and reusing the

functionalities offered by these libraries, in the context of their applications.

Delivery Date 1st April, 2021

Work Package WP4

Task T4.4

Dissemination Level Public

Type of Deliverable Report

Lead partner UNITN

InteropEHRate deliverable D4.10: Design of library for health data sharing for research - V1

 ii

InteropEHRate deliverable D4.10: Design of library for health data sharing for research - V1

 iii

CONTRIBUTORS

 Name Partner

Contributor Gábor Bella UNITN

Contributor Simone Bocca UNITN

Contributor Alessio Zamboni UNITN

Contributor Salima Houta FRAU

Contributor Sofianna Menesidou UBITECH

Contributor Martin Marot A7

Contributor Stella Dimopoulou BYTE

Contributor Charis Tsigkounis UPRC

Contributor Thanos Kiourtis UPRC

Contributor Argyro Mavrogiorgou UPRC

Reviewer Francesco Torelli ENG

Reviewer Patrick Duflot CHU

LOG TABLE

Version Date Change Author Partner

0.1 2020-07-27 First draft created Gábor Bella UNITN

0.2 2021-01-18 Cleaned up the document &

TOC, updated the library

descriptions and diagrams

Gábor Bella UNITN

0.3 2021-01-28 Updated APIs and diagrams to

the latest specifications

Gábor Bella UNITN

0.4 2021-02-28 Received contributions from

partners

Salima Houta, Sofianna

Menesidou, Martin

Marot,

Stella Dimopoulou,

FRAU,

UBITECH, A7,

BYTE, UPRC,

InteropEHRate deliverable D4.10: Design of library for health data sharing for research - V1

 iv

Charis Tsigkounis,

Simone Bocca,

Gábor Bella

UNITN

0.5 2021-03-04 Harmonizing document and

adding operation details

Gábor Bella UNITN

0.6 2021-03-10 Finishing the definition of

operations

Sofianna Menesidou,

Martin Marot,

Stella Dimopoulou,

Charis Tsigkounis,

Gábor Bella

UBITECH, A7,

BYTE, UPRC,

UNITN

0.7 2021-03-17 Added details on security

libraries and key generation,

document finished for internal

review

Gábor Bella UNITN

0.8 2021-03-19 Reviewed by CHU Patrick Duflot CHU

0.9 2021-03-22 Reviewed by ENG Francesco Torelli ENG

1.0 2021-03-23 Produced final version

following reviewer suggestions

Gábor Bella,

Sofianna Menesidou,

Martin Marot,

Charis Tsigkounis,

Stella Dimopoulou

UNITN,

UBITECH,

A7,

UPRC,

BYTE

2.0 2021-03-31 Quality check Argyro Mavrogiorgou UPRC

VFinal 2021-04-01 Final check and submission
version

Laura Pucci ENG

InteropEHRate deliverable D4.10: Design of library for health data sharing for research - V1

 v

ACRONYMS AND TERMS

Acronym Term Definition

CN Central Node A node of the Research Network (a server) that stores RDDs and
provides a central access point to S-EHR Apps for retrieving them.

- Citizen Any person potentially participating in a research study and having
the minimal technical means to do so, i.e. the S-EHR App installed
on their smartphone.

- Sponsor The (public or private) legal entity who has ordered the research
study and is paying for it.

CRC Coordinating
Research Centre

A medical research centre that initiates a particular research study
and is in charge of defining it and carrying it out.

CSR Certificate Signing
Request

A message sent from an applicant to a registration authority of the
public key infrastructure in order to apply for a digital identity
certificate.

PI of the
Research
Centre

Principal Investigator
of a Research Centre

The researcher (person) in charge of the citizens enrolled for a
specific study at a RC.

PI of the Study Principal Investigator
of the Study

The researcher (person) in charge of a specific study at the CRC.

CN
Administrator

Central Node
Administrator

A single person in charge of overseeing at the Central Node the
publishing of new research studies on the Research Network.

RDD Research Definition
Document

A document that contains a human-readable description of the
research study to be performed, as well as information written in a
formal, computer-processable language that describes the
research datasets to be retrieved from citizens’ EHRs, enrolment
and exit criteria, as well as related metadata.

RDDI RDD Interface Application Programming Interface offered by the Central Node,
allowing the S-EHR App to access the published RDDs.

RDS Research Data
Sharing

The protocol implemented by the libraries described in this
deliverable. Secure IT communication protocol (and APIs) for
publishing and retrieving machine processable descriptions of
research studies and for sending citizen’s consents and health data
from S-EHR Apps to research centres (that are RDS nodes), without
any cloud storage of health records.

RDSI RDS Interface Application Programming Interface allowing the exchange of
consent and health data between the S-EHR App and Research
Centres.

RN Research Network The network of research centres and technical nodes that
implement the Protocol.

InteropEHRate deliverable D4.10: Design of library for health data sharing for research - V1

 vi

RRC Reference Research
Centre

A research centre participating in a given study is a RRC for the
citizens who are officially attached to it (i.e. send data to it) for the
duration of the study.

InteropEHRate deliverable D4.10: Design of library for health data sharing for research - V1

 vii

TABLE OF CONTENTS

1. INTRODUCTION ... 1

1.1. Scope of the document ... 1

1.2. Intended audience ... 1

1.3. Structure of the document .. 1

1.4. Updates with respect to previous version (if any) .. 2

2. RELATION TO INTEROPEHRATE SCENARIOS .. 3

3. ARCHITECTURE AND INTERFACES.. 4

3.1. Libraries ... 5

4. CENTRAL NODE LIBRARIES ... 7

5. RESEARCH CENTRE LIBRARIES ... 9

6. S-EHR APP LIBRARIES ... 13

6.1. RDS-Logic Interface and Library ... 13

6.2. Anonymization / Pseudonymisation Interface and Library ... 16

6.3. Core S-EHR App Interface and Library ... 19

6.4. RDSI-Client Library ... 23

6.5. RDDI-Client Library .. 24

7. RDD ACCESS LIBRARY ... 25

7.1. RDD Validation ... 25

7.2. RDD Access .. 26

8. SECURITY LIBRARIES .. 27

8.1. Mobile RDS Security Management Library (M-RDS-SM) ... 27

8.2. Terminal RDS Security Management Library (T-RDS-SM) ... 31

9. LIBRARY INTERACTIONS ... 36

9.1. Setup Phase ... 36

9.2. Publishing Phase .. 36

9.3. Opt-In and Opt-Out Phases ... 37

9.4. Enrolment Phase ... 38

9.5. Data Retrieval Phase .. 41

9.6. Withdrawal Phase .. 42

10. CONCLUSIONS AND NEXT STEPS ... 44

InteropEHRate deliverable D4.10: Design of library for health data sharing for research - V1

 viii

LIST OF FIGURES

Figure 1 - Systems, actors, and communication channels of the…

Figure 2 - Research-related subcomponents of the S-EHR App, the Central…

Figure 3 - Components and operations of the RDD Validation library

Figure 4 - Sequence diagram of the SETUP phase

Figure 5 - Sequence diagram of the PUBLISHING phase

Figure 6 - Sequence diagram of the OPT-IN and OPT-OUT phases

Figure 7 - Sequence diagram of the ENROLLMENT phase

Figure 8 - Sequence diagram of the DATA RETRIEVAL phase

Figure 9 - Sequence diagram of the WITHDRAWAL phase

LIST OF TABLES

Table 1 - Summary of operations of the RDDI Interface

Table 2 - Methods of the RDSI Interface

Table 3 - Summary of operations of the RDS-Anonymization/Pseudonymisation Interface…

Table 4 - Operations of the RDS-Core S-EHR App Interface

Table 5 - Summary of operations of the RDS-Logic Interface

Table 6 - Summary of operations of the RDDAccess Interface

Table 7 - Summary of operations of the MRDSI-Security Interface

Table 8 - Summary of operations of the TRDSI-Security Interface

InteropEHRate deliverable D4.10: Design of library for health data sharing for research - V1

 1

1. INTRODUCTION

1.1. Scope of the document

This deliverable describes the APIs of a set of reusable software libraries that will constitute the reference

implementation of the Research Data Sharing Protocol [D4.8]. This libraries run inside three components of

the research data sharing infrastructure defined in [D4.8]:

● inside the S-EHR App on the mobile device of the citizen;

● inside the information system of the Research Centres participating in research studies;

● inside the Central Node of the Research Network that publishes the Research Definition Documents

(RDDs) of new studies, based on which data sharing is automated.

The libraries described here cover multiple aspects of the data sharing process:

● the logic of publishing, downloading, and interpreting RDDs;

● the logic of the study enrolment and data sharing process;

● the communication with citizens through the UI of the S-EHR App;

● pseudonym generation and pseudo-anonymization of the data to be shared;

● security of the data transmissions, including digital signature and encryption.

Differently from the specification of the RDS protocol, the present specification is non-normative, i.e.

developers are free to implement the RDS protocol by means of different libraries following a different

design as these choices do not impact on the interoperability.

1.2. Intended audience

This document is intended mainly for software developers and architects (both inside and outside the

InteropEHRate project) who wish to implement software components or applications that either realise or

use the research data sharing services that follow the Research Data Sharing Protocol [D4.8]. More

generally, the information contained in this deliverable can help developers understand the technical

requirements behind implementing such functionalities.

1.3. Structure of the document

Section 2 describes how the libraries described in this deliverable are used in the context of the

InteropEHRate scenarios and pilots, providing motivation for their design. Section 3 introduces the main

devices, software components, and (intra-device and inter-device) interfaces through which the libraries

communicate with each other. Section 4 describes the library operating the Central Node of the Research

Network. Section 5 describes the library in charge of the enrolment and data collection operations inside

the Research Centre information system. Section 6 describes the libraries inside the S-EHR App. Section 7

describes the libraries that help applications access Research Definition Documents. Section 8 describes

security-related libraries, used in every device participating in the data sharing process. Section 9 provides

sequence diagrams that show how the libraries defined in sections 4-8 interact with each other. Finally,

Section 10 provides conclusions and the next steps towards the future version 2 of this deliverable.

 2

1.4. Updates with respect to previous version (if any)

Not Applicable.

 3

2. RELATION TO INTEROPEHRATE SCENARIOS

The libraries described in this deliverable realise functionalities needed for the implementation of the

Research Scenario (that is, Scenario 3) of InteropEHRate [D2.3] and the Research Data Sharing Protocol

[D4.8]. This scenario and the corresponding project pilot consist of publishing the formal description of (a

small number of) research studies on the Central Node of the Research Network used for demonstration.

The S-EHR Apps of the citizens participating in the pilot will automatically download these formal and

digitally signed descriptions (called Research Definition Documents), interpret them, and automatically

compare them to the health data stored by the citizens’ S-EHR Apps in order to verify their eligibility to

participate in the given study. Each eligible citizen is explicitly asked by the S-EHR App whether they are

willing to participate in the study and consequently share their health data for this purpose. In case of

consent (digitally signed by the citizen), the citizen is officially enrolled into the study and is attached to a

Reference Research Centre (RRC) to which his/her data are sent. The actual sharing of pseudo-anonymized

and encrypted data happens automatically, on one or multiple occasions, initiated by the S-EHR App

according to the data collection period defined for the study.

The Research Scenario presupposes that the health data stored on the S-EHR Apps is already interoperable,

based on the Interoperability Profiles [D2.9].

 4

3. ARCHITECTURE AND INTERFACES

The figure below, already introduced and described in detail in [D4.8], shows the main software systems,

their exposed APIs, and the human actors whose actions and communication are covered by the Research

Data Sharing Protocol. On a high level, the protocol involves the following systems:

● the S-EHR App that holds a Citizen’s health data that can be shared for research purposes; it is also
through this app that the Citizen expresses his/her consents to data sharing;

● the Central Node (CN) on which machine-processable RDDS are published to be downloaded by S-
EHR Apps through a dedicated API;

○ the CN also includes a Research Portal that helps in the administration and publishing of
RDDs; while the portal is outside the scope of the RDS protocol, it relies on the libraries
described in this deliverable;

● the Research Centre Information System of each research centre participating to a given research
study, and to which citizens send their health data;

● in order to ensure that data sharing is performed in a secure and privacy-preserving manner, the
following third parties are also involved in the protocol mechanism:

○ a Certification Authority that provides certificates to the S-EHR App for the purposes of
asymmetric encryption and digital signature (which the S-EHR App needs to store and
manage),

○ a Pseudonym Provider that generates random pseudonyms to be used for privacy-
preserving data sharing (in case the research study indicates that the pseudonym-based
variant of the RDS Protocol should be used);

○ an eIDAS Node that will be used for authentication purposes with the Pseudonym Provider.

The security and privacy components are considered already to exist independently of the InteropEHRate

project, and the protocol uses their services as is. The first three systems, on the other hand, need to be

either adapted to the needs of research data sharing or, in the case of the Central Node, deployed as an

entirely new system.

As depicted in Figure 1, the systems communicate with each other through the following communication

interfaces:

● the RDDI (Research Definition Document Interface) through which RDDs are downloaded from the

Central Node by the S-EHR App;

● the RDSI (Research data Sharing Interface) through which consent to data sharing is expressed and

health data are securely transmitted;

● the CAI (Certification Authority Interface) through which the S-EHR App connects to a Certification

Authority to retrieve its certificates;

● the PPI (Pseudonym Provider Interface) through which the S-EHR App retrieves research-study-

specific pseudonyms (only for studies using pseudonym-based pseudonymisation);

● the eIDASI (eIDAS Node Interface) through which the S-EHR App connects to an eIDAS Node in

order to retrieve an authentication SAML assertion, used later for authentication with the

Pseudonym Provider (only for studies using pseudonym-based pseudonymisation).

Again, among these interfaces, the last three are considered already to be specified, implemented, and

provided by the respective components. The present deliverable is thus only concerned with implementing

the first to interfaces (RDDI and RDSI).

 5

Figure 1 - Systems, actors, and communication channels of the Protocol
The interfaces specified by the RDS protocol are depicted in green colour. The pre-existing systems and interfaces are
depicted in light blue, while the Research Centre that is also a pre-existing system but that must expose an interface
specified by the RDS protocol is depicted in grey. New systems required by the RDS protocol are depicted in yellow.

3.1. Libraries

Figure 2 below shows the library components that will be integrated within the reference implementation

of the S-EHR App, the Central Node, and the Research Centre above, as well as the internal interfaces they

expose to each other. The main goal of this deliverable is to specify the requirements and behaviour of

these libraries.

● RDS-Logic: implements the main Protocol logic on the citizen’s smartphone;

● Core S-EHR App Logic: this is an interface that needs to be implemented by existing vendor-specific

S-EHR Apps in order to support the logic that implements research data sharing, including user

interfaces, health data storage and retrieval, etc.;

● RDS-Anonymization: library providing data (pseudo-)anonymization functionalities to the RDS-

Logic component;

● RDS-Security: library providing security functionalities (encryption, digital signature) integrated

within all three systems (Central node, Research Reference Centre, S-EHR App);

● RDDI-Server and Client: server and client libraries implementing the services of the RDDI interface

(download of RDDs from the Central Node);

● RDSI-Server and Client: server and client libraries implementing the services of the RDSI interface

(citizen consent and sharing of health data).

 6

Figure 2 - Research-related subcomponents of the S-EHR App, the Central Node,

and the Research Center Information System. Orange-coloured local interfaces are introduced in this deliverable.

Green-coloured remote interfaces are defined as part of the Research Data Sharing Protocol.

 7

4. CENTRAL NODE LIBRARIES

Summary: the Central Node provides the services exposed through the Research Dataset Definition

Interface (RDDI), through a library called RDDI-Service. It also uses the RDS-Security library to secure the

RDDI communication channel. RDDI is a RESTful interface already defined by the RDS protocol [D4.8]; in this

document, it is presented in an evolved version.

Interface provided: RDDI

Used by: RDS-Logic through the RDDI-Client library, as well as the Research Portal deployed on the Central

Node itself.

RDDI Description

getOpenStudies An open endpoint that allows any caller, but primarily a S-EHR App, to retrieve the

digitally signed list of currently open studies, to which enrolment is possible.

Returns a list of RDDs, each describing a study.

Table 1 - Summary of operations of the RDDI Interface

Operation submitStudy

Name submitStudy

Description Allows a Researcher (Principal Investigator) to upload a new study on the

Central Node, in order to be published, in the form of a Research Definition

Document (RDD). The RDD is uploaded on the Central Node, where it is

syntactically validated with respect to the RDD InteropEHRate profile, moreover

the content of the RDD is checked to verify the validity of the information that

have to be published.

Caller An online Research Portal operated by the Researcher who wants to submit a

new study.

Arguments ● RDD: a formal Research Definition Document to be published

● Researcher Credentials: the Research Portal username and password of

the Researcher who wants to submit the study, which allows him/her to

use the Central Node submit service.

Return Value True on success, exceptions in case of wrong upload. The Research Portal shows

the RDDs correctly uploaded.

Exceptions ● Upload failed exception: the file provided for the upload is not a

Research Definition Document.

● Structure not allowed exception: the RDD provided for the upload

doesn’t respect the RDD InteropEHRate profile.

● File not selected exception: the file for the upload is missing.

 8

Preconditions ● The Researcher has to have an account with valid username and

password registered in the Central Node.

Operation getOpenStudies

Name getOpenStudies

Description Allows any caller (but primarily a S-EHR App through a RESTful API call) to

retrieve a digitally signed list of the currently open studies, to which enrolment

is possible. The RDD list which is retrieved through this service, contains all the

RDDs published on the Research Network (using the publishStudy operation),

which allow the enrolment of citizens (the enrolment period declared in the

RDD is open).

Caller The RDDI-Client library running on the mobile device, through a RESTful API call.

RDDI-Client, in turn, exposes a method with an identical signature to the RDS-

Logic library.

Arguments ● startDate: an optional filter in order only to retrieve open studies with

enrolment periods having started after the date given here.

Return Value ● a digitally signed list of RDDs (Research Definition Documents) that are

represented as FHIR bundles

● the certificate of the Central Node that certifies the authenticity of the

digital signature

Exceptions ● Empty list exception: there are no RDDs available.

Preconditions ● In order to be able to check the digital signature in the return value, the

caller needs to have access to the public key of the Central Node.

 9

5. RESEARCH CENTRE LIBRARIES

Summary: the Research Centre Information System provides the services exposed through the Research

Data Sharing Interface (RDSI), through a library called RDSI-Service. It also uses the RDS-Security library to

secure the RDSI communication channel. RDSI is a RESTful interface already defined by the RDS protocol

[D4.8]; in this document, it is presented in an evolved version.

Interface provided: RDSI

Used by: the RDSI-Client library on the mobile device (itself locally called by RDS-Logic).

RDSI Endpoint Description

sendEnrollmentConsen

t

Send the Citizen’s electronically signed consent of enrolling into a specific

study. The consent also includes the newly generated study-specific

pseudonym or pseudo-identity, as well as the S-EHR App ID. The receiving RC

checks the signature validity of the signedConsent, signs and returns the

contract signed by both parties.

sendExitNotification Send a notification that the Citizen is exiting a study due to the exit criteria

being met. If the RRC fails to satisfy the call, a corresponding RESTful API

Error is returned.

sendHealthData Allows a S-EHR App to send citizen health data to the RRC. The receiving RC

verifies and decrypts the encrypted and signed payload healthData and

retrieves the FHIR bundle contained within. If the RRC fails to satisfy the call,

a corresponding RESTful API Error is returned.

retrievePseudoIdentity Allows a S-EHR App to receive a pseudo identity which has been generated at

the RRC.

Table 2 - Methods of the RDSI Interface

Operation sendEnrollmentConsent

Name sendEnrollmentConsent

Description Send the Citizen’s electronically signed consent of enrolling into a specific study.

The receiving RC checks the signature validity of the signed consent, signs and

returns the contract signed by both parties.

Caller The RDS-Logic library running on the S-EHR App, through the intermediary of

the RDSI-Client library.

Arguments ● studyID: the ID of the study in which the Citizen is enrolling;

● citizenPseudo: pseudonym or pseudo-identity generated for the Citizen;

● citizenCertificate: certificate of the Citizen issued by a Certification

Authority and sent to the RC so that it can verify the digital signature;

● enrollmentCriteriaData: encrypted data values corresponding to the

enrolment criteria, so that the RC can cross-check their validity;

● signedConsent: a digitally signed document containing the Citizen’s

 10

consent to participate in the study.

Return Value ● The consent contract where the Research Centre has added its own

digital signature, and which is now signed by both parties;

● the certificate of the Research Centre that certifies the authenticity of

the digital signature.

Exceptions ● invalid content (study ID, pseudo-identity, consent form);

● digital signature cannot be verified;

● enrolment criteria not met

Preconditions ● The S-EHR App of the Citizen must have verified the eligibility of the

Citizen to participate in the study through checking the enrolment

criteria.

● The S-EHR App must have access to the Citizen’s private key in order to

sign the consent.

● The S-EHR App must have generated a pseudonym or pseudo-identity

to be used in the study, which conforms to the RDD of the study.

Operation sendExitNotification

Name sendExitNotification

Description Send a notification that the Citizen is exiting a study due to the exit criteria

being met or upon explicit withdrawal by the Citizen.

Caller The RDS-Logic library running on the S-EHR App, through the intermediary of

the RDSI-Client library.

Arguments ● studyID: the ID of the study in which the Citizen is enrolling;

● citizenPseudo: the study-specific pseudonym or pseudo-identity of the

Citizen;

● reason: either WITHDRAWAL or DROPOUT, the first one meaning a

voluntary withdrawal by the Citizen while the second is the

consequence of the exit criteria being met;

● reasonText: in the case of DROPOUT, a text string explaining the reason

for the exit (e.g. “blood pressure < 120”);

● citizenSignature: digital signature confirming the exit.

Return Value none

Exceptions ● invalid content (study ID, pseudo-identity, reason, signature);

● citizen not enrolled and thus cannot exit

Preconditions ● The Citizen must have enrolled into the study previously.

 11

Operation sendHealthData

Name sendHealthData

Description Allows a S-EHR App to send citizen health data to a Research Centre. The

receiving RC verifies and decrypts the encrypted and signed payload healthData

and retrieves the FHIR bundle contained within.

Caller The RDS-Logic library running on the S-EHR App, through the intermediary of

the RDSI-Client library.

Arguments ● studyID: the ID of the study in which the Citizen is enrolling;

● citizenPseudo: the study-specific pseudonym or pseudo-identity of the

Citizen;

● healthData: a FHIR bundle containing the health data (resources,

attributes, values) necessary for the study, in an encrypted form

Return Value -

Exceptions ● invalid content (study ID, pseudo-identity, healthData);

Preconditions ● The Citizen must have enrolled into the study previously.

● The S-EHR App must have access to the Citizen’s private key to encrypt

the health data, and the called Research Centre must have access to the

Citizen’s public key to be able to decrypt it.

Operation retrievePseudoIdentity (for pseudo-identity-based studies)

Name retrievePseudoIdentity

Description Allows a S-EHR App to receive a pseudo-identity which has been generated at

the RRC.

Caller The RDS-Logic library running on the S-EHR App, through the intermediary of

the RDSI-Client library.

Arguments ● studyID: the ID of the study for which the pseudo-id shall be generated

Return Value A string containing the pseudo-identity generated.

Exceptions ● invalid content (study ID);

● if the study does not require a pseudo-identity (i.e. it requires a

pseudonym obtained through a different channel)

 12

Preconditions ● The S-EHR App must have checked that the Citizen’s data fulfils the

enrolment criteria for the study, and that the Citizen consents to

participating in the study.

● The RDD specifies that the RRC must generate a pseudo-identity.

 13

6. S-EHR APP LIBRARIES

A large part of the Protocol logic is implemented in the S-EHR App, running on the Citizen’s phone. The

main component implementing the logic is called RDS-Logic in Figure 2. RDS-Logic interacts with a large

number of components inside the S-EHR App:

● Communication with the Central Node and the RRC. The RDS-Logic library communicates with the

Central Node and the information system of the Citizen’s chosen RRC through the corresponding

client libraries RDDI-Client and RDSI-Client.

● Use of security services. The RDS-Logic accesses security services through a local instance of the

RDS-Security library.

● Anonymization and pseudonymisation. The RDS-Logic accesses anonymization and

pseudonymisation services through the RDS-Anonymization library that implements the RDSAnonI

interface.

● Interaction with the S-EHR App. The RDS-Logic interacts with the rest of the S-EHR App logic

(including the app UIs) through two interfaces: the RDSCoreI interface exposed by the SEHR App

and, for operations initiated by vendor-specific logic such as the UI, the RDSLogicI interface

implemented by the RDS-Logic library.

6.1. RDS-Logic Interface and Library

Summary: this library implements the major part of the client-side logic of the RDS Protocol.

Interface provided: RDSLogicI

Used by: the S-EHR App.

RDSLogicI Description

setOptInStatus Set an internal flag that indicates whether the citizen has opted in or out of

participating in research studies.

getOptInStatus Get the value of the flag that indicates whether the citizen has opted in or

out of participating in research studies.

checkNewStudies Based on the last check date, ask the Central Node if there are

new/updated studies available.

fetchStudies return the list of previously retrieved studies the citizen is participating and

could participate

enrollInStudy Execute all operations necessary for study enrolment

withdrawFromStudy Execute all operations necessary for withdrawing from a study.

Table 5 - Summary of operations of the RDS-Logic Interface

 14

Operation setOptInStatus

Name setOptInStatus

Description Set an internal flag that indicates whether the Citizen has opted in or out of

participating in research studies.

Caller S-EHR App

Arguments ● boolean

Return Value -

Exceptions ● none

Preconditions ● none

Operation getOptInStatus

Name getOptInStatus

Description Get the value of the flag that indicates whether the citizen has opted in or out

of participating in research studies.

Caller S-EHR App

Arguments -

Return Value A flag that indicates whether the Citizen has opted in to participating in future

studies or not.

Exceptions ● none

Preconditions ● none

Operation checkNewStudies

Name checkNewStudies

Description Based on the date of the previous check, request the RDS-Logic library to poll

the Central Node for new/updated studies. The date of the previous check is

stored in the RDS-Logic library.

Caller S-EHR App

 15

Arguments -

Return Value An integer number representing the number of studies retrieved where the

Citizen is eligible to participate, based on the verification of enrolment criteria.

Exceptions ● NetworkException: if the Central Node is not reachable through the

network.

● An exception should be raised if the operation is invoked without opting

in.

Preconditions ● Should only be called if the Citizen has opted in.

Operation fetchStudies

Name fetchStudies

Description Return the list of previously retrieved ongoing and available studies (in which the

citizen is either already participating or could in theory participate)

Caller S-EHR App

Arguments -

Return Value A list of study metadata to be used for display purposes, extracted by the RDS-

Logic library from the RDDs (in order to hide RDD format details from the S-EHR

App logic).

Exceptions ● NotPartOfResearchNetworkException: the Citizen has not opted in to

the Research Network.

Preconditions ● none

Operation enrollInStudy

Name enrollInStudy

Description Execute all operations necessary for study enrolment

Caller S-EHR App

Arguments ● studyId: the ID of the study in which to enrol

● referenceRC: choice of the Reference Research Centre made by the

Citizen

Return Value -

 16

Exceptions ● UnknowStudyException: the ID does not correspond to any available

study

● ReferenceCenterInvalidException: the citizen did not choose any RRC,

or an invalid RRC is indicated as the choice.

● NotPartOfResearchNetworkException: the Citizen has not opted in to

the Research Network.

● NetworkException: the network connection to the Research Centre was

unsuccessful.

Preconditions ● The study identified in the input must be a valid study with enrolment

open.

● The Citizen has selected the study, consented to the enrolment, digitally

signed it, and selected a Reference Research Centre.

Operation withdrawFromStudy

Name withdrawFromStudy

Description Execute all operations necessary for withdrawing from a study.

Caller S-EHR App

Arguments ● studyId: the ID of the study from which to withdraw

Return Value Boolean

Exceptions ● UnknowStudyException: the ID does not correspond to a currently

ongoing study.

● NetworkException: the network connection to the Research Centre was

unsuccessful.

● NotEnrolledException: the Citizen has not enrolled into the study.

● NotPartOfResearchNetworkException: the Citizen has not opted in to

the Research Network.

Preconditions ● The study indicated in the input must be an ongoing study in which the

Citizen is participating.

6.2. Anonymization / Pseudonymisation Interface and Library

Summary: provide in-device data anonymization and pseudonymisation functionalities over research data.

Interface provided: RDSAnonI

 17

Used by: RDS-Logic library inside the mobile device.

The design principle underlying the definition of this library is a distinction between structured data

(essentially in FHIR format, but also data structures included in DICOM images) and unstructured data

(image bitmaps, PDF documents, etc.). The design decision is that structured data is anonymized inside the

mobile device (i.e. through this library) while unstructured data is not, due to the potential complexity of

the task: dealing with multilingual data, text embedded in image bitmaps, etc. For unstructured data, it is

supposed that pre-anonymized versions of such datasets will be uploaded into the S-EHR App together with

their non-anonymized versions. When running the RDS service, the S-EHR App will automatically return the

anonymized versions of unstructured data. In case anonymized versions are not available, the S-EHR App

will not return the datasets.

RDSAnonI Description
setPseudo Set the pseudo-identity or pseudonym (depending on the technique

requested in the RDD) used to pseudonymize a citizen’s health data.

getPseudo Get the previously computed pseudo-identity or pseudonym (depending

on the technique requested in the RDD) from the library.

anonymizeData Anonymize structured data.

pseudonymizeData Pseudonymize structured data.

retrievePseudonym Retrieve a pseudonym from a Pseudonym Provider.
Table 3 - Summary of operations of the RDS-Anonymization/Pseudonymisation Interface (with Pseudo-identities)

Operation setPseudo

This operation is used to set either a pseudonym or a pseudo-identity, according to the needs of

the research study as defined in the RDD. The pseudo has been previously retrieved either from a

Pseudonym Provider or from a Research Centre.

Name setPseudo

Description Depending on the requirements of the study, set either a pseudo-identity or a

pseudonym for the pseudonymisation of a citizen’s health data.

Caller RDS-Logic

Arguments ● pseudoType: indicates whether the library should use a pseudo-identity

or a pseudonym

● pseudo: sets the pseudo-identity/pseudonym which will substitute a

citizen’s personal information

● studyID: the research study to which the pseudo-id applies

Return Value Void

Exceptions ● Thrown if any of the input values is null.

Preconditions ● none

 18

Operation getPseudo

This operation is used to get a previously set pseudonym or pseudo-identity.

Name getPseudo

Description Get the pseudo associated to the study indicated as input.

Caller RDS-Logic

Arguments ● studyID: the research study to which the pseudo-id applies

Return Value ● The pseudo as a String;

● a flag indicating whether the pseudo is a pseudonym or a pseudo-

identity.

Exceptions ● InvalidStudyException: if the study ID in input does not have a pseudo

associated.

Preconditions ● none

Operation anonymizeData

Name anonymizeData

Description Anonymize structured data.

Caller RDS-Logic

Arguments ● data: a FHIR bundle containing FHIR resources, attributes, and values,

that need to be anonymized

● typeOfFile: the type of the data file (structured or unstructured)

Return Value The same FHIR bundle as in the input, except that identifying data provided in

the input are removed.

Exceptions ● FHIRParsingException: in case the input cannot be parsed as a FHIR

bundle conform to the InteropEHRate Interoperability Profiles.

Preconditions ● none

Operation pseudonymizeData

Name pseudonymizeData

 19

Description Pseudonymise structured data.

Caller RDS-Logic

Arguments ● data: a FHIR bundle containing FHIR resources, attributes, and values,

that need to be pseudonymized

● typeOfFile: the type of the data file (structured or unstructured)

Return Value The same FHIR bundle as in the input, except that identifying data provided in

the input are replaced with the pseudo-id/pseudonym.

Exceptions ● FHIRParsingException: in case the input cannot be parsed as a FHIR

bundle conformant to the InteropEHRate Interoperability Profiles.

● PseudoException: in case the pseudo-identity or the pseudonym is not

set.

Preconditions ● The pseudo-id/pseudonym must be set.

Operation retrievePseudonym (for pseudonym-based studies)

Name retrievePseudonym

Description Allows a S-EHR App to receive a pseudonym from a trusted third party that acts

as a PP. This trusted third party could also be the RRC or any other entity.

Caller The RDS-Logic library running on the S-EHR App.

Arguments ● anAssertion: Anonymous assertion token

Return Value A string containing the pseudonym generated.

Exceptions ● Invalid content (study ID).

Preconditions ● The S-EHR App has already been authenticated by an eIDAS node.

6.3. Core S-EHR App Interface and Library

Summary: this is an interface not implemented by the RDS reference libraries, but to be implemented by

the S-EHR App logic (core S-EHR App Logic). Its function is to allow the RDS-Logic library to query the

content of the S-EHR App and to notify the S-EHR App UI about relevant events.

Interface provided: RDSCoreI

Used by: RDS-Logic library inside the mobile device.

 20

RDSCoreI Description

notifyPendingStudies Upon opt-out, if there are ongoing research studies, notifies the citizen of this

fact.

checkCriteria Checks whether the citizen’s health data match the criteria as formulated by

the PathQuery.

notifyEnrollment Notify the citizen of the successful enrolment in a study.

notifyExit Notify the citizen of exiting a study due to a particular reason.

notifyDataRetrieval Notify the citizen that data is being sent as part of a specific study.

queryData Retrieve citizen health data according to the query in input.

Table 4 - Operations of the RDS-Core S-EHR App Interface

Operation notifyPendingStudies

Name notifyPendingStudies

Description Upon opt-out, if there are ongoing research studies, requests the S-EHR App UI

to notify the Citizen of this fact.

Caller RDS-Logic

Arguments ● pendingStudyList: metadata of the ongoing research studies

Return Value -

Exceptions ● none

Preconditions ● none

Operation notifyNewStudies

Name notifyNewStudies

Description Requests the S-EHR App UI to notify the Citizen that new studies are available to

him/her.

Caller RDS-Logic

Arguments ● studyList: list of research studies available to the Citizen

Return Value -

Exceptions ● none

Preconditions ● It has previously been verified that the Citizen matches the enrolment

criteria of all studies given as input.

 21

Operation checkCriteria

Name checkCriteria

Description Checks whether the citizen’s health data match the (enrollment or exit) criteria

as formulated by the FHIR Group object given as input.

Caller RDS-Logic

Arguments ● condition: a FHIR Group object that represents the enrolment or exit

criteria

Return Value ● A boolean value that is true if the criteria are met, false otherwise;

● the data values corresponding to the Group object, represented inside a

FHIR bundle.

Exceptions ● FHIRConverterException: if the input Group object values cannot be

properly converted.

Preconditions ● none

Operation notifyEnrollment

Name notifyEnrollment

Description Request the S-EHR App UI to notify the Citizen of the successful enrolment in a

research study

Caller RDS-Logic

Arguments ● study: metadata to be displayed about the study

Return Value -

Exceptions ● none

Preconditions ● Enrolment into the study must have been successful, with “success”

returned by the Research Centre.

Operation notifyExit

Name notifyExit

Description Request the S-EHR App UI to notify the citizen of exiting a study due to the exit

criteria specified by the RDD being met.

 22

Caller RDS-Logic

Arguments ● study: metadata to be displayed about the study

● reason (optional): human-readable reason for the exit

Return Value -

Exceptions ● none

Preconditions ● none

Operation notifyDataRetrieval

Name notifyDataRetrieval

Description Request the S-EHR App UI to notify the citizen that data is being sent to a

Research Centre as part of a specific study.

Caller RDS-Logic

Arguments ● study: metadata to be displayed about the study

● data (optional): human-readable list of data elements (attributes) being

sent

Return Value -

Exceptions ● none

Preconditions ● none

Operation queryData

Name queryData

Description Retrieve citizen health data according to the query in input

Caller RDS-Logic

Arguments ● query: a FHIR PathQuery that represents the data elements (attributes)

to be queried

Return Value A ResultSet that contains FHIR bundle(s) that include(s) the data values queried,

may be empty if no data is found.

 23

Exceptions ● FHIRParseException: if the input PathQuery could not be parsed.

Preconditions ● none

Operation notifyWithdrawal

Name notifyWithdrawal

Description Request the S-EHR App UI to notify the citizen of successfully having withdrawn

from a study.

Caller RDS-Logic

Arguments ● study: metadata to be displayed about the study

Return Value -

Exceptions ● none

Preconditions ● none

6.4. RDSI-Client Library

Summary: this library implements connectivity to the server-side RDSI interface, running on the Research

Centre Information System.

Interface provided: the interface mirrors exactly that of the RDSI-Server. See Section 5 for a detailed list of

operations.

Used by: the RDS-Logic library.

RDSI Endpoint Description

sendEnrollmentConsen

t

Local call corresponding to the same remote RDSI operation.

sendExitNotification Local call corresponding to the same remote RDSI operation.

sendHealthData Local call corresponding to the same remote RDSI operation.

retrievePseudoIdentity Local call corresponding to the same remote RDSI operation.

Table 2 - Methods of the RDSI Interface

Operation sendEnrollmentConsent

The local call mirrors the eponymous remote operation defined in section 5.

Operation sendExitNotification

 24

The local call mirrors the eponymous remote operation defined in section 5.

Operation sendHealthData

The local call mirrors the eponymous remote operation defined in section 5.

Operation retrievePseudoIdentity (for pseudo-identity-based studies)

The local call mirrors the eponymous remote operation defined in section 5.

6.5. RDDI-Client Library

Summary: this library implements connectivity to the server-side RDDI interface, running on the Central

Node.

Interface provided: the interface mirrors that of the RDSI-Server.

Used by: the RDS-Logic library.

RDDI Description

getOpenStudies Local call corresponding to the same remote RDDI operation.

Operation getOpenStudies

The local call mirrors the eponymous remote operation defined in section 4.

 25

7. RDD ACCESS LIBRARY

Summary: the goal of the RDD Access library is to provide services for accessing and manipulating

structured RDD content. This involves the syntactic validation of RDDs, as well as high-level data access that

allows applications to retrieve RDD content while hiding data representations details from them.

Interface provided: RDDAccessI

Used by: the RDS-Logic library on the client side, the RDD Server on the server side.

RDDAccessI Description

validateResource Validate a FHIR resource against the RDS-IG.

Table 6 - Summary of operations of the RDDAccess Interface

7.1. RDD Validation

The RDD Validation library provides operations that can be used to validate FHIR resources against the RDS

Implementation Guide. This includes a check if the structure and the selected code values of the resources

are valid. The following figure shows the UML class diagram representing the classes provided by the

library.

Figure 3 - Components and operations of the RDD Validation library

The library's validateResource operation is used to validate FHIR resources and supports JSON and XML

formats. If an instance of this class is created, it will first check if the package is already installed and install

the contained version when necessary. If it finds the package, it will not check if the installed version is the

same as the contained one. If it is necessary to update the package it can be manually deleted and will be

reinstalled during the next validation. Alternatively, the installRDSIG operation of the IGInstaller class can

be used to overwrite it. The following table provides a description of the exposed operation.

Operation validateResource

Name validateResource

Description Validate a FHIR-Resource against the RDS-IG [D2.9]. It can validate resources in

JSON and XML formats.

 26

Arguments ● resource: the resource that will be validated. The resource can be

provided in the following formats:

○ String

○ InputStream

● profiles (optional, not recommended): a list of Strings, that contains

profiles the resource should be validated against. If no profiles are

provided, it will be validated against the profiles listed in the

Resource.meta.profile attribute

● isJSON: a boolean that specifies the resource format. If the boolean is

true the input is treated as a JSON file, otherwise it is treated as an XML

file

Return Value On success, the operation will return an OperationOutcome. This

OperationOutcome contains all errors, warnings, and notes that were found

during validation.

Exceptions ● IOException: caused by malformed resources.

● EOperationOutcome exception: caused by the failure to create the

OperationOutcome.

Preconditions ● The device has access to the internet and is connected to the

terminology server.

7.2. RDD Access

The goal of the RDD Access library is to hide format, version, and implementation details with respect to

reading data from Research Definition Documents. Instead of having to parse RDDs directly, applications

can use the RDD Access library to read relevant data elements from it.

The library will be described in detail in v2 of this deliverable.

 27

8. SECURITY LIBRARIES

In the context of the RDS scenario, the security functionalities are implemented through two libraries: one

used by the S-EHR App on the mobile device, invoked by the RDS-Logic component, and the other one used

on the server side, invoked by the RDDI-Server and RSI-Server components. The mobile-side library, called

M-RDS-SM, includes functionalities for key agreement, digital signature, and encryption, while the server-

side library, T-RDS-SM, provides operations for key agreement, digital signature, and decryption.

8.1. Mobile RDS Security Management Library (M-RDS-SM)

Summary: provides security functionalities to S-EHR App and calls external security provider services (e.g.

CA, eIDASI and PP).

Interface provided: MRDSI-Security

Used by: the RDS-Logic library inside the mobile device.

The M-RDS-SM library is shared by the S-EHR App components that implement the Protocol. Through the

MRDSI-Security interface, it provides essential services for protocol security, such as digital signature, AES

encryption and Diffie-Hellman key agreement.

MRDSI-Security Description

fetchCertificate Storage of the Certificate in Android keystore.

signPayload Digitally sign the input content using an asymmetric private key.

verifySignature Verify a digital signature using an asymmetric public key.

aliceInitKeyPair Create a Diffie-Hellman key pair (to be used by the S-EHR App)

aliceKeyAgreement Create and initialize a Diffie-Hellman KeyAgreement object

aliceKeyAgreementFin Generate a shared secret.

alicePubKeyEnc Encode the public key given in input.

generateSymmetricKey Generate an AES session key that will be used for encrypted communication

between the RRC and the S-EHR App.

encrypt Encrypt using AES.

Table 7 - Summary of operations of the MRDSI-Security Interface

Operation fetchCertificate

Name fetchCertificate

Description This call generates an X.509 certificate signed by the citizen’s CA upon a CSR

request. The Certificate is stored in the keystore of the device.

Caller RDS-Logic

Arguments ● String name: Full name of the owner

● String organisation: Organisation he/she belongs (optional)

● String country: Nationality (optional)

● String uid: Unique identifier

 28

Return Value Void

Exceptions ● In the first version of the library implementation, certificates will be

generated and self-signed, and the following exceptions will be emitted:

○ NoSuchProviderException, in cases the KeyPairGenerator not

able to identity the provider for key pair generation (e.g.: "BC")

○ NoSuchAlgorithmException, in cases the KeyPairGenerator not

able to identity the algorithm for key pair generation (e.g. RSA)

● In the final version with the actual CA utilisation this will be replaced by

a general Exception:

○ Exception, in case of signal error or an unknown error

Preconditions ● Internet connection

● Public/private key generation and storage in Android keystore

Operation signPayload

Name signPayload

Description Digitally sign the input content using an asymmetric private key.

Caller RDS-Logic

Arguments ● content: the content to be signed

● privateKey: the private key used for the signature

Return Value The signed content, represented as a single string.

Exceptions ● IOException

● SignatureException

● InvalidKeyException

● NoSuchAlgorithmException

● InvalidKeySpecException

Preconditions ● successfully fetched credentials from a CA

Operation verifySignature

Name verifySignature

Description Verify a digital signature using an asymmetric public key.

Caller RDS-Logic

 29

Arguments ● signedContent: the signed content in which the signature is to be

verified

● publicKey: the public key used for verification

Return Value A boolean value, “true” meaning that the signature was successfully verified.

Exceptions ● UnsupportedEncodingException

● NoSuchAlgorithmException

● InvalidKeyException

● SignatureException

Preconditions ● successfully fetched credentials from a CA

Operation aliceInitKeyPair

Name aliceInitKeyPair

Description Create a Diffie-Hellman key pair (to be used by the S-EHR App).

Caller RDSI-Server

Arguments -

Return Value KeyPair aliceKpair: Diffie Hellman key pair

Exceptions ● Exception1

Preconditions ● N/A

Operation aliceKeyAgreement

Name aliceKeyAgreement

Description Create and initialize a Diffie-Hellman KeyAgreement object.

Caller RDSI-Server

Arguments ● KeyPair aliceKpair: Diffie Hellman key pair

Return Value KeyAgreement aliceKeyAgree: Diffie HellmanKeyAgreement object

Exceptions ● Exception1

Preconditions ● Successful Diffie Hellman key pair generation

 30

Operation aliceKeyAgreementFin

Name aliceKeyAgreementFin

Description Generate a shared secret.

Caller RDSI-Server

Arguments ● byte[] bobPubKeyEnc: Encoded public key

● KeyAgreement aliceKeyAgree: Diffie Hellman KeyAgreement object

Return Value KeyAgreement keyagreement: The same shared secret is generated

Exceptions ● Exception1

Preconditions ● Successful generation of Diffie Hellman key agreement

Operation alicePubKeyEnc

Name alicePubKeyEnc

Description Encode the public key given in input.

Caller RDSI-Server

Arguments ● KeyPair aliceKpair: Diffie Hellman key pair

Return Value byte[] alicePubKeyEnc: Encoded public key

Exceptions ● Exception1

Preconditions ● Key pair successfully created

Operation generateSymmetricKey

Name generateSymmetricKey

Description Generate an AES session key that will be used for encrypted communication

between the RRC and the S-EHR App.

Caller RDS-Logic

Arguments ● byte[] sharedSecret: generated shared secret

● int size: Size in bits of the key pair

Return Value SecretKeySpec symKey: the symmetric key generated.

 31

Exceptions ● Exception1

Preconditions ● The same secret is generated

Operation encrypt

Name Encrypt

Description Encrypt using AES.

Caller RDS-Logic

Arguments ● String payload: the content to be encrypted.

● String symKey: the symmetric key to be used for encryption.

Return Value String cipher: the encrypted payload.

Exceptions ● Exception1

Preconditions ● Symmetric key agreement established

8.2. Terminal RDS Security Management Library (T-RDS-SM)

Summary: provides security functionalities to both the Central Node and Research Centre and calls external

security provider services (e.g. the CA).

Interface provided: TRDSI-Security

Used by: the RDDI-Server library inside the Central Node and the RDSI-Server library inside the Research

Centres.

The T-RDS-SM library is shared by the Central Node and Research Center components that implement the

Protocol. Through the TRDSI-Security interface, it provides essential services for protocol security, such as

digital signature, AES decryption and Diffie-Hellman key agreement.

TRDSI-Security Caller Description

fetchCertificate RDDI-Server,

RSI-Server

Storage of Certificate in the keystore

signPayload RDDI-Server,

RSI-Server

Digitally sign the input content using an asymmetric private

key

verifySignature RSI-Server Verify a digital signature using an asymmetric public key

bobInitKeyPair RSI-Server Create a Diffie-Hellman key pair (to be used by the RRC)

bobKeyAgreement RSI-Server The RRC creates and initializes its DH KeyAgreement object

bobPubKeyEnc RSI-Server The RRC encodes its public key, and sends it over to S-EHR

App.

 32

bobKeyAgreementFin RSI-Server The RRC generates the (same) shared secret.

generateSymmetricKey RSI-Server AES session key that will be used for encrypted

communication between the RRC and the S-EHR App

decrypt RSI-Server AES decryption method

Table 8 - Summary of operations of the TRDSI-Security Interface

Operation fetchCertificate

Name fetchCertificate

Description This call generates an X.509 certificate signed by the server’s CA upon a CSR

request.

Caller RDS-Logic

Arguments ● String name: Full name of the owner

● String organisation: Organisation he/she belongs (optional)

● String country: Nationality (optional)

● String uid: Unique identifier

Return Value Void

Exceptions ● NoSuchProviderException

● NoSuchAlgorithmException

Preconditions ● Internet Connection

● Public/Private key generation and storage in keystore

Operation signPayload

Name signPayload

Description Digitally sign the input content using an asymmetric private key.

Caller RDDI-Server, RDSI-Server

Arguments ● content: the content to be signed

● privateKey: the private key used for the signature

Return Value The signed content, represented as a single string.

 33

Exceptions ● IOException

● SignatureException

● InvalidKeyException

● NoSuchAlgorithmException

● InvalidKeySpecException

Preconditions ● None

Operation verifySignature

Name verifySignature

Description Verify a digital signature using an asymmetric public key.

Caller RDSI-Server

Arguments ● signedContent: the signed content in which the signature is to be

verified

● publicKey: the public key used for verification

Return Value A boolean value, “true” meaning that the signature was successfully verified.

Exceptions ● UnsupportedEncodingException

● NoSuchAlgorithmException

● InvalidKeyException

● SignatureException

Preconditions ● None

Operation bobInitKeyPair

Name bobInitKeyPair

Description Create a Diffie-Hellman key pair (to be used by the RRC).

Caller RDS-Logic

Arguments ● byte[] alicePubKeyEnc: Encoded public key

Return Value KeyPair bobKpair: Diffie Hellman key pair generation

Exceptions ● Exception1

Preconditions ● Successful generation of public key

 34

Operation bobKeyAgreement

Name bobKeyAgreement

Description Create and initialize a Diffie-Hellman KeyAgreement object.

Caller RDS-Logic

Arguments ● KeyPair bobKpair: Diffie Hellman key pair

Return Value KeyAgreement bobKeyAgree: Diffie Hellman key agreement object

Exceptions ● Exception1

Preconditions ● Successful generation of Diffie Hellman key agreement object

Operation bobKeyAgreementFin

Name bobKeyAgreementFin

Description Generate a shared secret.

Caller RDS-Logic

Arguments ● PublicKey alicePubKey: Public key

● KeyAgreement bobKeyAgree: Diffie Hellman key agreement object

Return Value KeyAgreement keyagreement: The same shared secret is generated

Exceptions ● Exception1

Preconditions ● Successful generation of Diffie Hellman key agreement

Operation bobPubKeyEnc

Name bobPubKeyEnc

Description Encode the public key given in input.

Caller RDS-Logic

Arguments ● KeyPair bobKpair: Diffie Hellman key pair

Return Value byte[] bobPubKeyEnc: Encoded public key

Exceptions ● Exception1

 35

Preconditions ● Key pair successfully created

Operation generateSymmetricKey

Name generateSymmetricKey

Description Generate an AES session key that will be used for encrypted communication

between the RRC and the S-EHR App.

Caller RDSI-Server

Arguments ● byte[] sharedSecret: generated shared secret

● int size: Size in bits of the key pair

Return Value SecretKeySpec symKey: the symmetric key generated.

Exceptions ● Exception1

Preconditions ● The same secret is generated

Operation decrypt

Name Decrypt

Description Decrypt using AES.

Caller RDSI-Server

Arguments ● String encryptedPayload: the encrypted content.

● String symKey: the symmetric key used for decryption.

Return Value String plainContent: the decrypted payload.

Exceptions ● Exception1

Preconditions ● Symmetric key agreement established

 36

9. LIBRARY INTERACTIONS

This section presents the interactions of the libraries described in the deliverable in order to implement the

RDS Protocol phases defined and described in detail in [D4.8]. The phases are:

● OPT-IN: the Citizen accepts to be solicited to participate in future research studies;

● OPT-OUT: the Citizen decides not to be solicited anymore for future studies;

● ENROLLMENT: the eligibility of the Citizen to a newly published study is checked; in the positive

case, the consent of the Citizen is asked, and the consenting Citizen is enrolled into the study;

● DATA RETRIEVAL: for an ongoing study in which the Citizen is enrolled, health data is retrieved

from his/her mobile device and sent to his/her Reference Research Centre;

● WITHDRAWAL: the Citizen decides to interrupt his/her participation in an ongoing research study.

In addition, the SETUP and PUBLISHING phases are included below that, while not strictly part of the RDS

Protocol, are a prerequisite for fulfilling the preconditions of the operations in the other phases.

9.1. Setup Phase

In this phase, public key certificates are retrieved from the Certification Authority for all three kinds of

peers involved in the RDS Protocol: S-EHR Apps, the Central Node, and Research Centres. The S-EHR App

also retrieves the public key of the Central Node in order to be able to verify the integrity of RDDs

downloaded in the ENROLLMENT phase.

Figure 4 - Sequence diagram of the SETUP phase

9.2. Publishing Phase

Below is the sequence diagram of the RDD PUBLISHING process, happening on the Central Node. In this

phase, the PI of a study submits a study proposal, in the form of an RDD, to the Central Node using a tool

that is outside of the scope of this deliverable: for example, a web portal---we will call this tool the Central

Node Portal. The Central Node Portal will exploit the libraries described in this deliverable. The Central

Node validates the RDD from a syntactic point of view. Then the Central Node Administrator also manually

reviews the non-syntactic aspects of the proposal and, if no issues are detected, he/she publishes the

digitally signed RDD on the Central Node.

The following libraries participate in the process:

● the RDDI Server where Research Definition Documents are published;

 37

● the TRDSI-Security library for the digital signature of RDDs;

● the RDDAccess library for the syntactic validation of RDDs.

The process is as follows:

1. the PI of the Study submits a new RDD through the Portal;

2. the CN verifies the syntactic validity of the RDD before accepting the submission;

3. the CN Administrator reviews and officially accepts the submission;

4. the RDD is digitally signed by the CN and is published on the CN.

Figure 5 - Sequence diagram of the PUBLISHING phase

9.3. Opt-In and Opt-Out Phases

Below is the sequence diagram of the OPT-IN and OPT-OUT functionalities implemented on the mobile

device. The diagram depicts the interaction of the RDS-Logic library (implementing the RDS Protocol logic

inside the S-EHR App) and the core S-EHR Application that controls the UI through which the Citizen

interacts. Upon OPT-OUT, the Citizen is notified of ongoing studies from which he/she is not withdrawn

automatically.

 38

Figure 6 - Sequence diagram of the OPT-IN and OPT-OUT phases

9.4. Enrolment Phase

Below is the sequence diagram of the ENROLLMENT phase of the RDS Protocol. The diagram depicts the

interaction of the RDS-Logic library (implementing the RDS Protocol logic inside the S-EHR App) with:

● the core S-EHR Application that controls the UI through which the Citizen interacts;

● the anonymization library for the purpose of generating a pseudonym or a pseudo-identity;

● the server-side and mobile-side security libraries that implement digital signature and encryption;

● the RDDI Server from which Research Definition Documents are downloaded, and the

corresponding Client library;

● the RDSI Server library (running inside the Research Centre Information System) that registers

enrolment requests, and with which the S-EHR App communicates through the corresponding

Client library;

● the RDDAccess library for syntactically validating the RDD downloaded.

The process is as follows:

1. at regular intervals, the S-EHR App downloads the RDDs of open studies from the RDD Server;

2. the integrity of the RDDs downloaded is checked through verification of the digital signature and

the syntactic validity of the RDD;

3. by checking the enrolment criteria, the S-EHR App verifies the eligibility of the Citizen to participate

in any of the new studies;

4. eligible Citizens are asked for their explicit consent to participate in the study, as well as to choose

a Reference Research Centre (RRC) to which they will be attached;

5. a pseudo-identifier is generated for the Citizen for future use:

a. either a pseudo-identity is retrieved from the RRC,

b. or a pseudonym is retrieved from the Pseudonym Provider, where the Citizen is

authenticated through a SAML assertion previously retrieved from the eIDAS Node;

 39

6. an encryption key pair is generated between the RRC and the S-EHR App in order to ensure

subsequent secure exchange of data;

7. the consent document is digitally signed by the Citizen;

8. the signed consent is sent to the RRC;

9. the RRC, in turn, signs the consent and sends back a copy to the Citizen.

 40

Figure 7 - Sequence diagram of the ENROLLMENT phase

 41

9.5. Data Retrieval Phase

Below is the sequence diagram of the DATA RETRIEVAL phase of the RDS Protocol. The diagram depicts the

interaction of the RDS-Logic library (implementing the RDS Protocol logic inside the S-EHR App) with:

● the core S-EHR Application that controls the UI through which the Citizen interacts;

● the anonymization library for the purpose of generating a pseudonym or a pseudo-identity;

● the security library implementing digital signature and encryption functionalities;

● the RDSI Server library (running inside the Research Centre Information System) to which health

data is sent, and with which the S-EHR App communicates through the corresponding Client library.

The process is as follows:

1. the exit criteria are regularly checked to ensure that the Citizen still conforms to the study

requirements;

2. in case of non-conformance, the Citizen exits the study and the RRC is informed of this fact;

3. at intervals defined in the RDD, health data are queried from the Citizen’s smart health record;

4. the data retrieved are pseudo-anonymized;

5. the data are encrypted and digitally signed;

6. the pseudo-anonymized, encrypted, and signed data are sent to the RRC which acknowledges

reception;

7. the Citizen is notified of the successful data retrieval operation.

 42

Figure 8 - Sequence diagram of the DATA RETRIEVAL phase

9.6. Withdrawal Phase

Below is the sequence diagram of the WITHDRAWAL phase of the RDS Protocol. The diagram depicts the

interaction of the RDS-Logic library (implementing the RDS Protocol logic inside the S-EHR App) with:

● the core S-EHR Application that controls the UI through which the Citizen interacts;

● the security library implementing digital signature and encryption functionalities;

● the RDSI Server library (running inside the Research Centre Information System) to which the

withdrawal is sent, and with which the S-EHR App communicates through the corresponding Client

library;

● the TRDS-Security library, used on the server side to verify the digital signature.

The process is as follows:

 43

1. the Citizen tells the S-EHR App through the UI of the withdrawal request;

2. the withdrawal request is digitally signed;

3. the withdrawal request is sent to the RRC who verifies the signature, acknowledges the withdrawal,

and updates its own records;

4. the Citizen is notified of the success of the process.

Figure 9 - Sequence diagram of the WITHDRAWAL phase

 44

10. CONCLUSIONS AND NEXT STEPS

The contents of this document initially serve as guidance to producing reference implementations and

demonstrators developed in the InteropEHRate project to showcase the Research Data Sharing Protocol

[D4.8] and the underlying interoperability infrastructure. Based on this implementation experience, a

consolidated version 2 of this deliverable will be produced, providing technical specifications for future

applications and describing the InteropEHRate reference implementations.

Accordingly, the current version 1 of this deliverable provides a first design of the libraries based on an

initial phase of software development. We expect its second version to introduce more implementation

details and possibly minor modifications, based on implementation experience gathered in the meantime.

We already foresee the following future extensions:

● The second version of the RDS Protocol (described in [D4.9] and of this deliverable will introduce

research questionnaires that will be included in the RDD, proposed to participating citizens, and the

answers to which will be sent to research centres.

● Accordingly, the contents of the RDD (defined separately in [D2.9]) and the corresponding RDD

Access library will also need to evolve.

● The RDD Access library, currently in progress, will be fully specified.

● We expect evolution of the anonymization requirements and design: due to the novelty and

complexity of anonymization executed on mobile devices, the approach underlying the solution

described in this deliverable is not yet fully consolidated, and will be subject to further research.

● The identification of S-EHR App products may be necessary for a posteriori traceability of data

contributions, therefore this information may be sent to research centres in the enrolment phase.

● The enrolment request currently does not send citizen identification data to research centres, only

pseudo-identification. However, in exceptional cases of emergency (such as the discovery of a

serious medical condition based on the health data shared), the research centre may need to

contact citizens directly, and for this may need personal contact details. The sharing of such details

will be considered for inclusion in the next version of this deliverable.

● In relation to the previous point, reverse pseudonymisation will be considered for the next version,

where the Pseudonym Provider will maintain and provide to research centres the identity of

citizens in specific cases of emergency.

● The usage of interaction with the CA will also be included in the next version.

● The second version of the RDS protocol will also consider the case if the RC decides that the citizen

should exit from the study (e.g. for health complications or complex exit criteria that cannot be

checked by the S-EHR App).

 45

REFERENCES

● [D2.3] InteropEHRate Consortium, D2.3-Requirements Specification V3, 2021.

www.interopehrate.eu/resources/#dels

● [D2.9] InteropEHRate Consortium, D2.9-FHIR profile for EHR interoperability v3, 2021.

www.interopehrate.eu/resources/#dels

● [D4.8] InteropEHRate Consortium, D4.8-Specification of protocol and APIs for research health data

sharing - V1, 2021. www.interopehrate.eu/resources/#dels

● [D4.9] InteropEHRate Consortium, D4.9-Specification of protocol and APIs for research health data

sharing - V2, 2021. www.interopehrate.eu/resources/#dels

