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1. INTRODUCTION  
According to OWASP, two out of the top ten mobile risks are a) insecure communications and b) insecure 

data storage [45] [owasp2020]. On one hand, insecure data transmission to and from a mobile app 

generally takes place through a telecom carrier and/or over the internet. Hackers intercept data either by 

interfering with the local area network of users through a compromised Wi-Fi network, by tapping into the 

network through routers, cellular towers, proxy servers, or by exploiting an infected app through a 

malware. Insecure data storage is an easy way in which an adversary can access data in a mobile device. On 

the other hand, an adversary can either gain physical access to a stolen device or enter into it using a 

malware or a repackaged app.  

Encryption is the main technique to mitigate both insecure communications and data storage. Healthcare 

data encryption has become a popular option for protecting sensitive medical information. The need for 

encryption has become more prevalent with the rapid increase in the number of practices using Electronic 

medical records (EMRs) and mobile devices. Encryption is a mean to protect patient health information 

when it is transmitted from one user to another. 

In addition, the healthcare industry can benefit from cloud technology to facilitate communication, 

collaboration, and coordination among different healthcare providers. However, to ensure the patients’ 

control over access to their own health data, it is necessary to encrypt the data before transferred and 

stored in the cloud. In fact, the outsourcing to cloud brings several security risks.  

Due to the high value of the sensitive health data, the third-party storage servers are often the targets of 

various malicious behaviours which may lead to exposure of the data. That was the case of  the famous 

incident of the stored data in the Department of Veterans Affairs database containing sensitive PHI of 26.5 

million military veterans, including their social security numbers and health problems that was stolen by an 

employee who took the data home without authorization [13]  [La2006].  

Last but not least, in emergency situations, it is crucial, for sensitive encrypted data, to be able to be 

decrypted when a specific access control policy on who can decrypt the data applies [3]  

[Bethencourt2007]. 

1.1. Scope of the document 
The main goal of the present document is to describe the InteropEHRate specification of protocols for 

encryption mechanics for both a) health data storage on mobile devices, HCP App and cloud services and b) 

health data exchange among them. Moreover, the deliverable describes the research conducted regarding 

encryption mechanisms. In a nutshell, for data encryption in transit we propose apart from having enabled 

the encryption mechanisms that are supported from the Bluetooth and HTTPS over the Internet, an 

application level encryption for encrypted communication. In the same manner, for data encryption in 

storage apart from full disk encryption based on TEE mechanisms, we propose an application level 

encryption for encrypted storage. To this end a detailed symmetric encryption-based specification will be 

provided. 
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1.2. Intended audience 
The document is mainly intended for developers, architects, manufacturers, security engineers, and all the 

project participants and partners interested to have an overview of how the InteropEHRate supports 

encryption/decryption mechanisms for data storage and data exchange. 

1.3. Structure of the document  
This deliverable is structured as follows: 

 Section 1 (the current section) introduces the overall concept of the document, defining its scope, 

intended audience, and relation to the other project tasks and reports. 

 Section 2 describes and reviews the research background regarding encryption mechanisms for 

both data storage and data exchange.  

 Section 3 introduces the overall encryption/decryption mechanisms in terms of InteropEHRate, 

where it is analysed in detail for both data storage and data exchange.  

 Section 4 concludes the deliverable, including the updates and the future development plans. 

1.4. Updates with respect to previous version (if any) 
Not applicable. This deliverable contains the first version of the Specification of encryption mechanisms.  
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2. TECHNICAL BACKGROUND 
This chapter includes the necessary background and terminology for the encryption mechanisms, starting 

from the cryptography basics, the state-of-the-art solutions for both data storage and data exchanged and 

a detailed literature review on the challenging cloud data storage.  

2.1.  Cryptography 
Cryptography is one of the most used techniques to build security and is an indispensable tool for 

protecting information in computer systems [44]  [Ghulam2018]. Cryptography is used to store and transfer 

the data in such a form that only the sender and the receiver can understand it or process it. In addition, 

cryptography depends upon both the algorithm and the key. There are two main types of Cryptography, 

Symmetric key cryptography and Asymmetric cryptography. 

Symmetric Key Cryptography: In symmetric key cryptography, a shared secret key is used between the 

sender and recipient in order to encrypt and decrypt the data. There are many algorithms that are based on 

symmetric key cryptography, like Caesar cipher, Block cipher, Stream cipher, DES (Data Encryption 

Standard), and AES (Advanced Encryption Standard). The main disadvantage of using symmetric key 

cryptography is the need to exchange the secret key between the sender and the receiver in a secure 

manner. In addition, symmetric algorithms such as the AES demand only a small amount of computational 

power [14] [Lisonek2008]. 

Asymmetric Key Cryptography:  In asymmetric key cryptography, also called public key cryptography, two 

different keys are used for encryption and decryption. These two keys are known as a public key and 

private key, where one the former is used for encryption and the latter is used for decryption. The private 

key is a secret key, private key never exposed. There are many algorithms that are based on asymmetric 

key cryptography, like Diffie-Hellman, RSA (Rivest - Shamir - Adleman) and Elliptic Curve Cryptography 

(ECC). This method of encrypting data eliminates the need for the existence of a unique shared key 

between the communicating partners but requires more computational power to perform manipulations 

on the data in comparison to symmetric cryptographic techniques [14] [Lisonek2008]. 

Identity-based encryption: The identity-based encryption is a type of asymmetric key encryption in which a 

user's public key is a string (can be a user's identity or mail address) combined with a public master key. 

User obtains his private key from Private Key Generator (PKG) [35] [BF03]. 

Attribute-based encryption: Attribute-based encryption (ABE) is a recent promising cryptographic method 

proposed by Sahai and Waters in 2005 [34] [SW05]. The ABE technique extends the identity-based 

encryption (IBE) to enable expressive access policies and fine-grained access to encrypted data. In both 

schemes IBE and ABE, cryptographic keys are managed by a Trusted Third Party (TTP), usually called 

Attribute Authority (AA). In ABE, data is encrypted along with an access structure which is the logical 

expression of the access policy. The encrypted data can be decrypted by any user if his secret key has 

attributes that satisfy the access policy. The power of ABE is that we do not need to rely on the storage 

server for avoiding unauthorized data access since the access policy is embedded in the ciphertext itself 

[41] [Lounis2014]. The two main variants of ABE are the Key-Policy Attribute-Based Encryption (KP-ABE) 

[42] [GPSW06] and the Ciphertext Policy Attribute-Based Encryption (CP-ABE) [43] [BSW07].  
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2.2.  Encryption for Data in Transit 
Security is one of the main challenges when it comes to eHealth services and is crucial requirement for the 

transmission of required health data over the network. Data in transit are vulnerable to interception and 

potentially redirection attacks. InteropEHRate deals with three protocols namely the D2D, R2D and RDS. 

The D2D is over Bluetooth without Internet usage, while the R2D and RDS are over the Internet. This 

section will provide a brief overview of the encryption mechanisms used. In the context of InteropEHRate 

it’s assumed that common best practices, such as HTTPS (Hypertext Transfer Protocol Secure), are enabled, 

but will also be provided as an extra security layer at the application level encryption. 

2.2.1. Data exchange over Bluetooth 

Bluetooth devices are used to exchange encrypted data over an encrypted link with the use of a “link key”. 

The creation of that key depends on the pairing methods [25] [Lecroy]. These pairing methods help the 

users to decide whether they exchange no key at all, or if they want to use a 6-digit (randomly or not) 

generated passcode which is used to authenticate the users [26] [Loveless2018] [29] [Ravikiran]. In 

addition, if the devices have enabled out-of-band communication channels, then all the needed 

information and the key will be exchanged out of the Bluetooth band. If two devices want to share 

information, for instance a file, then they have to (i) first, exchange device information to establish a secure 

connection and (ii) through the use of the common key, which they agreed to, encrypt the connection. 

After that the establishment of the secure channel, they can securely exchange their data [28] [bon2016] 

[29]  [Ravikiran]. 

Prior to Bluetooth version 2.1, pairing was not secure at all [26] [Lecroy]. A passive eavesdropper was able 

to crack the user’s PIN and then compute the traffic key. Since Bluetooth v2.1 Secure Simple Pairing is used, 

which uses Elliptic Curve Diffie-Hellman (ECDH) for establishment of the session keys. In this way, a passive 

eavesdropper is prevented from obtaining the traffic keys. Version 4.0 established Bluetooth Low Energy 

(BLE), which approached the traffic encryption by using the AES algorithm. But even though the encryption 

is better, the lack of use of ECDH made the encryption keys vulnerable to passive eavesdroppers [27] 

[Corella2015]. In the context of InteropEHRate, the latest AES encryption of Bluetooth will be used, apart 

from the application level encryption. 

2.2.2. Data exchange over Internet 

Traditionally, secure socket layer (SSL) is used for establishing secure communications. However, the IETF 

deprecated SSL in 2015, with Transport Layer Security (TLS) 1.0 supplanting SSL 3.1, but the ‘SSL’ tag has 

stuck, often representing both standards. A website that has implemented these cryptographic protocols is 

marked Secure HTTPS (HTTP within SSL/TLS), which should be table stakes for any mobile app. 

HTTPS is an extension of the Hypertext Transfer Protocol and letter “S” is referred to Security. HTTPS is 

used to establish a secure communication over a computer network [32] [Sullivan2018]. Clients and servers 

can communicate the same way as they did by using HTTP, but in this case, they communicate over a 

secure SSL or TLS connection, which encrypts and decrypts the messages that both client and server 

exchange. As HTTPS is the secure version of HTTP, it adds encryption in HTTP in order to increase the 

security of the data being transferred. In practice, this provides an assurance that no one can possibly alter 

the communications between two parties [33] [Kothari2019]. 
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Transport Layer Security (TLS) is a widely used security protocol, which protects the data that is transmitted 

online, between a web browser and a website through HTTPS. TLS also provides confidentiality and data 

integrity through encryption and it ensures that the other party in a connection is who he says that he is 

[31] [Lake2019]. By using both symmetric and asymmetric encryption a secure connection is established 

and so the data are transmitted between client and server. The client and the server should agree to the 

algorithms that they will use for both symmetric and asymmetric encryption. The negotiation for the 

agreement on the utilised algorithms is handled internally by the protocol. The most frequent algorithm for 

symmetric encryption is Advanced Encryption Standard (AES) and for asymmetric encryption is Diffie-

Hellman [30] [Prodromou2019]. 

2.3. Encryption for Data in Storage 
An end user device is a personal computer (desktop or laptop), a consumer device (e.g., personal digital 

assistant, smart phone), or a removable storage media (e.g., USB flash drive, memory card, external hard 

drive, writable CD or DVD) that can store information. Storage security is the process of allowing only 

authorized parties to access and use stored information [46]  [nist800-111]. Data at rest is extremely 

vulnerable, and thus, in the context of InteropEHRate we will focus on mobile, desktop and cloud data 

storage since they are the main involved devices in the InteropEHRate architecture. According to [46] 

[nist800-111] the common types of storage encryption are:  

 Full Disk Encryption (FDE) - For a computer that is not booted, all the information encrypted by FDE 

is protected, assuming that pre-boot authentication is required. When the device is booted, then 

FDE provides no protection; once the OS is loaded, the OS becomes fully responsible for protecting 

the unencrypted information. FDE can be achieved with a Trusted Platform Module (TPM). 

 Virtual Disk and Volume Encryption - When virtual disk encryption is employed, the contents of 

containers are protected until the user is authenticated. If single sign-on is being used for 

authentication to the solution, this usually means that the containers are protected until the user 

logs onto the device. If single sign-on is not being used, then protection is typically provided until 

the user explicitly authenticates to a container. 

 File/Folder Encryption - File/folder encryption protects the contents of encrypted files (including 

files in encrypted folders) until the user is authenticated for the files or folders. If single sign-on is 

being used, this usually means that the files are only protected until the user logs onto the device. 

If single sign-on is not being used, then protection is typically provided until the user explicitly 

authenticates to a file or folder. 

2.3.1. Mobile Data Storage 

This section describes the storage encryption techniques that are used in both known mobile devices 

Android and iOS. In order to provide confidentiality, the medical data must be encrypted before it is stored 

on the mobile phone or any other device. As aforementioned, symmetric encryption enables the data to be 

securely stored in an efficient manner. 

 Android Data Storage - Android supports two major categories for storage encryption, the full-disk 

encryption (FDE) and the file-based encryption (FBE). In Android versions 5.0 up to 9.0 FDE is 

supported and is enabled by default with the use of Advanced Encryption Standard (AES) algorithm 

[16] [androidd2020]. In Android version 7.0 or later FBE is supported too. FBE has the ability to 

encrypt different files with different keys and hence each file can be decrypted independently [17] 
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[androidf2020]. FBE keys, which are 512-bit keys, are stored encrypted by another key (a 256-bit 

AES-GCM key) held in the Trusted Execution Environment (TEE) [17] [androidf2020]. 

 iOS Data Storage - Apple automates by default the FBE encryption process of an iPhone from 

version 8 and above [18] [kaspersky] with a 256-bit AES encryption [19] [applesec]. The data which 

is stored on the phone is automatically encrypted through a unique identifier which is built into the 

device’s hardware. In addition all personal data are encrypted by default whenever the phone is 

locked, and it is necessary for the user to have a passcode or Touch ID enabled (i.e. their 

fingerprint) in order to prevent unauthorized access to data [20] [nield2020] [21] [appledev]. 

2.3.2. Desktop Data Storage 

This section describes the storage encryption techniques that are used for both database and disk storage. 

The first subsection describes the technologies that are used for the encryption of data in databases, both 

Structured Query Language (SQL) and NoSQL, since both HCP Apps and Cloud services use databases to 

store their data, and the second describes disk encryption techniques. In the context of InteropEHRate we 

assume that common best practices, such as full disk encryption are enabled, but we will also provide 

application level encryption. 

 Database Encryption - Structured Query Language (SQL) supports Transparent Data Encryption 

(TDE). TDE encrypts both the data and log files [22] [microsoftder2019]. The encryption process is 

using either AES or Triple DES algorithm [23] [microsofttde2019]. The process of encryption and 

decryption are real time and they are completely transparent to the applications that have access 

to these databases [22] [microsoftder2019]. NoSQL databases, and specifically MongoDB, support 

data-in-motion encryption and the data-at-rest encryption [24] [Townsend]. For data-in-motion 

encryption, both Transport Layer Security (TLS) and Secure Socket Layer (SSL) protocols are 

supported. For data-at-rest encryption, an AES 256-bit symmetric key encryption at the file level is 

used.  

 Full-Disk Encryption - FDE is encryption at the hardware level, where the data is automatically 

written encrypted. When it is read, it is automatically decrypted. However, such an approach has 

the disadvantage of additional time overhead for accessing data. 

2.3.3. Cloud Data Storage and Break-glass Encryption 

Three types of cryptography are commonly used to secure EHRs: a) symmetric key cryptography, b) public 

key cryptography, and c) attribute-based encryption [47] [Madnani2013]. “Break-glass” is a term used in IT 

healthcare systems in order to denote an emergency access to private information without having the 

credentials to do so [10] [Scafuro2019]. Several works in the literature deal with the concept of break-glass 

encryption for cloud storage [10] [Scafuro2019] [12] [Oliveira2020]. Cloud services emerge as a promising 

solution to this problem by allowing ubiquitous access to information. However, Electronic Medical Records 

(EMR) storage and sharing through clouds raise several concerns about security and privacy.  

Several studies propose to send the EMR to a cloud service provider, where it is stored and encrypted with 

an encryption key known by the cloud provider [8] [Abbas2014]. However, this approach does not protect 

the medical data against internal attacks [8] [Abbas2014]. The storage of sensitive data over the cloud 

requires cryptography techniques in order to keep data confidential and preserve patients' privacy. 

Moreover, various solutions, based on symmetric or public cryptography, have been proposed to provide 

cryptographic access controls that allow storage and sharing of data on untrusted servers [36] [KRS+03] 
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[37] [GSMB03] [38] [BCHL09] [39] [dVFJ+07] [40] [WLOB09]. However, these techniques do not support fine 

grained access control required by medical applications and are not scalable with the number of users and 

introduce high complexity in key distribution and management.  

The work in [5] [Li2010] proposes a unique authority to authenticate the medical staff to access the data. 

Other research works suggest encrypting the EMR with a secret key before storing it in the cloud [4] 

[Zhang2010] [7] [Mashima2012]. However, this means that the secret key needs to be pre-shared with all 

the legitimate users that need to access the EMR throughout the treatment, while in case of revoking the 

treatment process, the EMR must be re-encrypted with a new key and re-distributed to the legitimate users 

making the whole process not efficient [12] [Oliveira2020]. Moreover, several works attempt to address 

access control of encrypted data by using secret sharing schemes combined with identity-based encryption 

[1] [Benaloh1988] [2] [Brickell1989]. However, such schemes do not address resistance to collusion attacks. 

A break-glass solution based on a password-based encryption and a master secret key-based encryption 

proposed in [9] [Zhang2016]. The work in [10] [Scafuro2019] proposed a solution where the security of the 

ciphertexts stored on a cloud can be violated exactly once, in a way that is detectable and without relying 

on a trusted third party, in case of secret keys lost.  

Another approach is to use attribute-based encryption (ABE) techniques to control access to patients’ data. 

In [6] [Brucker2010], the authors present an ABE-based break-glass access control. However, their solution 

does not enable revoking access after it is granted [12] [Oliveira2020]. The authors in [15] [Li2013] propose 

a patient-centric framework and a suite of mechanisms for data access control to PHRs stored in semi-

trusted servers based on attribute-based encryption (ABE) techniques to encrypt each patient’s PHR file. 

Their work also enables dynamic modification of access policies or file attributes, supports efficient on-

demand user/attribute revocation and break-glass access under emergency scenarios.  

Several works leverage techniques, such as Role Based Access Control (RBAC) and Attribute Based 

Encryption (ABE), to provide fine-grained access control required by personal medical systems. In research 

work [48] [IAP09], applied Ciphertext Policy ABE (CP-ABE) is used to enable patients to securely store and 

share their health record on external third-party servers. In [49] [LYRL10], authors proposed a novel 

practical framework for fine-grained data access control to medical data in Cloud. To avoid high key 

management complexity and overhead, they organized the system into multiple security domains where 

each domain manages a subset of users [41] [Lounis2014]. The work in [11] [Yang2019] presents a self-

adaptive access control scheme for healthcare by combining attribute-based encryption (ABE) and a 

password-based break-glass key, which is pre-set by the patient. A contact holds this key for emergency 

situations when break-glass access has to be activated. More recently, the work in [12] [Oliveira2020] 

proposes the usage of  the ciphertext-policy ABE (CP-ABE) associated with policies defined for emergency 

situations, based on the research [3] [Bethencourt2007], as well as the usage of an authentication token  to 

grant and revoke access dynamically without the need to re-encrypt the patient EMR. In the context of 

InteropEHRate we will combine symmetric key encryption for the medical data and CP-ABE for the 

symmetric key encryption. 

2.3.3.1. Confidential Computing 

Public cloud systems are the de facto platform of choice to deploy online services. As a matter of fact, all 

major IT players provide some form of “infrastructure-as-a-service” (IaaS) commercial offerings, including 

Microsoft, Google and Amazon [55] [Göttel2019]. IaaS infrastructures allow customers to reserve and use 
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(virtual) resources to deploy their own services and data. These resources are eventually allocated in the 

form of virtual machines, containers or bare metal instances over the cloud provider’s hardware 

infrastructure [55] [Göttel2019]. However, the privacy concerns have greatly limited the deployment of 

systems over public clouds. The recent introduction of new hardware-assisted memory protection 

mechanisms inside x86 processors  paves the way to overcome the limitations [55] [Göttel2019]. 

Confidential computing refers to performing computations with additional data confidentiality and integrity 

guarantees. TEEs have recently emerged as one of the most flexible and mature technologies, which can 

enable confidential computing. Many of today’s leading technology companies are actively developing and 

promoting confidential computing technologies [53] [CCC2020]. Different TEE implementations vary in 

terms of features. The two most know TEE technologies are Intel SGX and AMD SEV.  

 Intel Intel Software Guard Extension (SGX) [56] [Pires2019] is primarily conceived for shielding 

micro-services, so that the trusted code base would be minimised. Automatic memory encryption 

and integrity protection are performed by hardware over a reserved memory area fixed at booting 

time, defined in the basic input/output system (BIOS) and limited to 128MiB (usable 93.5MiB). 

Whatever is kept in this area is automatically encrypted and integrity checked by hardware. The 

trust boundary is the CPU package, which holds hardware keys upon which attestation and sealing 

services are built. Applications are partitioned into trusted and untrusted parts, while the OS is 

considered untrusted.  

 AMD secure encrypted virtualisation (SEV) [56] [Pires2019] provides automatic inline encryption 

and decryption of memory traffic, granting confidentiality for data in use by virtual machines. 

Cryptographic operations are performed by hardware and are transparent to applications, which 

do not need to be modified. Keys are generated at boot time and secured in a coprocessor 

integrated to the System on Chip (SoC). It was conceived for cloud scenarios, where guest VMs 

might not trust the hypervisor. Apart from including the whole guest OS in the trusted code base, it 

does not provide memory integrity and freshness guarantees as Intel SGX. 

In general, Intel SGX focuses on micro services, while AMD SEV designed for cloud. AMD SEV offers better 

performance for intensive workloads and is transparent to the software running in an SEV-enabled VM. 

Both Microsoft and Amazon offer confidential computing based on Intel SGX, while Google very recently 

announced such a feature based on the AMD SEV [57] [Google2020]. Table 1 below summarizes these two 

know TEE technologies used for confidential computing [56] [Pires2019]. 

Commercial TEE Technologies Intel SGX AMD SEV 

Public Cloud provider 
announcements 

Microsoft Azure Confidential 
Computing (2018) & Amazon AWS 

Nitro Enclaves (2019) 

Google Confidential Virtual Machines 
(2020) 

Released 2015 2016 

Target devices Client PCs Servers 

Running mode User-level Hypervisor 
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Executes arbitrary code yes yes 

Secret hardware key yes yes 

Attestation and Sealing yes yes 

Memory encryption yes yes 

Memory integrity yes no 

Resilient to wiretap yes yes 

I/O from TEE no no 

TEE usable memory limit 93.5MiB system RAM 

Trusted Computing Base Trusted app partition Entire VMs 

Table 1 - Comparison of TEEs [56] [Pires2019] 
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3. INTEROPEHRATE SPECIFICATION FOR ENCRYPTION MECHANISMS 
The purpose of this Chapter is to show how the InteropEHRate project will handle encryption/decryption 

mechanisms, for data storage and data exchange in the context of InteropEHRate use cases, namely 

medical visit, research protocol and emergency scenarios. In this section is provided an overview of how 

the different actors and organizations involved in the InteropEHRate architecture in D2.4 [52] interact with 

each other in the context of the encryption mechanisms. More specifically, in the context of interoperate 

data data-at-rest should be symmetrically encrypted using a military-grade NIST-compliant algorithm (e.g. 

AES with 256bit key), while the symmetric-encryption Key (that is used for data-at-rest) should be stored 

and retrieved by a local KeyStore (password-protected or biometric protected). In addition, apart from the 

application-level encryption, transport-level encryption shall be used such as TLS v1.2 which incorporates 

both secure-key-exchange and strong network-level encryption (e.g. Diffie-Hellman key exchange and RSA-

based encryption). 

3.1. InteropEHRate Encrypted Storage and Communication 
InteropEHRate architecture involves three communication protocols: the device-to-device (D2D), the 

remote-to-device (R2D) and the research data sharing (RDS). In the context of R2D and RDS, TLS 1.2 should 

be enabled for encrypted communication.  In the context of D2D, the AES Bluetooth encryption should be 

enabled. In addition, application level symmetric encryption will be used in cases the TLS 1.2 and Bluetooth 

encryption are missing or not enabled. This deliverable will focus on the application level encryption 

specification. As can be seen in Figure 1 below, apart from the storage encryption, encryption is needed in 

all the communication channels, namely R2D Access, R2D Backup, R2D Emergency, RDS Research and D2D 

since sensitive medical data are transferred.  

 

Figure 1 – Usage of the D2D, R2D and RDS protocols 
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3.2.1. InteropEHRate Security Protocol Phases 

InteropEHRate security protocol for D2D, R2D Access and RDS, towards establishing an encrypted storage 

and communication channel consists of the following five phases:  

 Phase 1: Bootstrap - In this phase the prerequisites regarding certificate acquisition on both entities 

are performed.   

 Phase 2: IDM Phase - In this phase each entity verifies the identity of the other entity by certificate 

exchange and signature verification. 

 Phase 3: Consent Management Phase - In this phase the patient gives his consent for process upon 

his data. 

 Phase 4: Key Establishment Phase - In this phase a symmetric key establishment is performed for 

secure communication.  

 Phase 5: Encrypted Storage and Communication Phase - In this phase both parties use the 

established symmetric key to transfer and store data in encrypted form. 

InteropEHRate security protocol for R2D Backup and R2D Emergency, towards establishing an encrypted 

storage and communication channel consists of the following three phases:  

 Phase 1: Consent Management Phase - In this phase the patient gives his consent for process upon 

his data. 

 Phase 2: Encrypted Storage and Communication Phase - In this phase both parties use the 

established symmetric key to transfer and store data in encrypted form. 

 Phase 3: Emergency Phase - In this phase the HCP request and retrieves the encrypted data. 

This deliverable will focus on Phases 4 - Key Establishment Phase and 5 - Encrypted Storage and 

Communication Phase in the context of D2D, R2D Access and RDS and on Phases 2 - Encrypted Storage and 

Communication Phase and 3 - Emergency Phase in the context of R2D Backup and R2D Emergency, since 

previous Phases were already defined in the previous InteropEHRate deliverables D3.3 [50] , D3.7 [51] and 

are out of scope of this deliverable. However, all previous Phases should be completed successfully before 

the key establishment and the encrypted communication phases take place. 

3.2.2. D2D, R2D Access and R2R Encrypted Communication Conceptual API 

The following Figure 2 displays the UML diagram representing the five phases including the 

encryption/decryption functionality based on the D2D. Phases 4 and 5 should be the same in all the D2D, 

R2D and RDS. D3.10 will provide further details regarding the design of the libraries. 
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Figure 2 – Overall Security Protocol Phases (D2D, R2D Access and RDS) 

The following tables provide a complete description of all the methods, which are similar for the D2D, R2D 

Access and RDS communication channels (see Figure 1). 
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Operation generateSymmetricKey / Phase 4 / Key Establishment 

Name generateSymmetricKey 

Description The symmetric key generation method takes no input. It outputs the symmetric session key 
encryption in transit. More specifically, the Java KeyGenerator class 
(javax.crypto.KeyGenerator) will be used to generate symmetric encryption keys of 256 bit 
length keys for secure communication. 

Arguments  No arguments 

Return Value  Symmetric key symKey 

Exceptions  GeneralSecurityException 
 IOException 

Preconditions  All the Phases from 1 to 3 to finish successfully.  

Table 2 - generateSymmetricKey 

Operation asymmetricEncryptKey / Phase 4 / Key Establishment 

Name asymmetricEncryptKey 

Description The asymmetric encrypt key takes as input the generated symmetric key symKey and the 
SEHRCert for secure key exchange. It outputs the encrypted symmetric key encSymKey. 
Asymmetric encryption algorithm will be used for encryption (e.g. Diffie-Hellman key 
exchange or RSA-based encryption).  

Arguments  Symmetric key symKey 
 Certificate SEHRCert 

Return Value  Encrypted symmetric key encSymKey 

Exceptions  GeneralSecurityException 
 IOException 

Preconditions  All the Phases from 1 to 3 to finish successfully.  

Table 3 – asymmetricEncryptKey 
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Operation sendSymKey / Phase 4 / Key Establishment 

Name sendSymKey  

Description The sendSymKey method takes as input the encrypted symmetric key encSymKey. It 
outputs the encrypted symmetric key encSymKey, in order both parties have the same key. 

Arguments  Encrypted symmetric key encSymKey 

Return Value  Encrypted symmetric key encSymKey 

Exceptions  GeneralSecurityException 
 IOException 

Preconditions  All the Phases from 1 to 3 to finish successfully.  

Table 4 - sendSymKey 

Operation asymmetricDecryptKey / Phase 4 / Key Establishment 

Name asymmetricDecryptKey 

Description The asymmetricDecryptKey takes as input the encrypted symmetric key encSymKey and 
the Private key SHERPrivKey. It outputs the symmetric key symKey. The same algorithm 
with encryption will be used for decryption. 

Arguments  Encrypted symmetric key encSymKey 
 Private key SHERPrivKey 

Return Value  Symmetric key symKey 

Exceptions  GeneralSecurityException 
 IOException 

Preconditions  All the Phases from 1 to 3 to finish successfully.  

Table 5 – asymmetricDecryptKey 
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Operation encrypt / Phase 5 / Encrypted Communication 

Name encrypt 

Description The encryption method takes as input the payload that needs to transfer securely and the 
symmetric key symKey. It outputs the encrypted payload encPayload.  More specifically, 
AES 256 block cipher will be used as an encryption/decryption algorithm. This method 
applies to both the entities for secure communication. 

Arguments  Payload payload 
 Symmetric key symKey 

Return Value  Encrypted payload encPayload 

Exceptions  GeneralSecurityException 
 IOException 

Preconditions  All the Phases from 1 to 4 to finish successfully.  

Table 6 – encrypt 

Operation decrypt / Phase 5 / Encrypted Communication 

Name decrypt 

Description The decryption algorithm takes as input encrypted payload encPayload and the symmetric 
key symKey. It outputs the payload. More specifically, AES 256 block cipher will be used as 
an encryption/decryption algorithm. This method applies to both the entities for secure 
communication. 

Arguments  Encrypted payload encPayload 
 Symmetric key symKey 

Return Value  Payload payload 

Exceptions  GeneralSecurityException 

Preconditions  All the Phases from 1 to 4 to finish successfully.  

Table 7 – decrypt 
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Operation generateSymmtericKey / Phase 5 / Encrypted Storage 

Name generateSymmetricKey 

Description The symmetric key generation method takes no input. It outputs the symmetric key for 
encryption in storage. More specifically, the Java KeyGenerator class 
(javax.crypto.KeyGenerator) will be used to generate symmetric encryption keys of 256 bit 
length keys for secure storage. This method applies to both the entities for secure storage. 

Arguments  No arguments 

Return Value  Symmetric key symKey 

Exceptions  GeneralSecurityException 
 IOException 

Preconditions N/A 

Table 8 – generateSymmetricKey 

Operation storeData / Phase 5 / Encrypted Storage 

Name storeData 

Description The safe storage of the data. It encrypts the data before stored with a different symmetric 
known only to the application that stores the data. This method applies to both the entities 
for secure communication. 

Arguments  Payload payload 
 Symmetric key symKey2/symKey3 

Return Value  Encrypted payload encPayloadStorage 

Exceptions  GeneralSecurityException 
 IOException 

Preconditions  This symmetric key should be different from the one used for the encrypted 
communication for security purposes. 

Table 9 – storeData 
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3.2.3. R2D Backup and R2D Emergency Encrypted Communication Conceptual 

API 

In the S-EHR Cloud symmetric encryption will be used for secure transport and storage. More specifically, S-

EHR App encrypts the data for backup with AES and uploads them to the cloud for storage. The symmetric 

key is added in a QR code, in order the HCP could access it for emergency cased. The HCP will decrypt the 

ciphertext if after scanning the QR code and retrieving the symmetric key. The following Figure 3 displays 

the UML diagram representing the three phases including the encryption/decryption functionality. This 

deliverable will focus on Phases 2 and 3 since, Phase 1 is out of scope of this deliverable. 

 

Figure 3 – Overall Security Protocol Phases (R2D Backup and R2D Emergency) 

 

Operation generateSymmtericKey / Phase 2 / Encrypted Communication and Storage 

Name generateSymmtericKey 

Description The generateSymmtericKey generates a symmetric key for AES encryption. This will 
be used to encrypt user’s data. 

Arguments  No arguments 

Return Value  Symmetric key symKey 
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Exceptions  GeneralSecurityException 
 IOException 

Preconditions N/A 

Table 10 – generateSymmtericKey 

Operation generateQR / Phase 2 / Key Establishment 

Name generateQR 

Description The generateQR generates the QR code including the symmetric key that is necessary for 
decryption in emergency situations.  

Arguments  Symmetric key symKey 

Return Value  QR code 

Exceptions  GeneralSecurityException 
 IOException 

Preconditions N/A 

Table 11 – generateQR 

Operation encrypt / Phase 2 / Encrypted Communication and Storage 

Name encrypt 

Description The encryption algorithm takes as input the payload that needs to transfer securely and 
the symmetric key symKey. It outputs the encrypted payload encPayload.  More 
specifically, AES 256 block cipher will be used as an encryption/decryption algorithm. 

Arguments  Payload payload 
 Symmetric key symKey 

Return Value  Encrypted payload encPayload 
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Exceptions  GeneralSecurityException 
 IOException 

Preconditions N/A 

Table 12 – encrypt 

Operation uploadData / Phase 2 / Encrypted Communication and Storage 

Name uploadData 

Description The uploadData method uploads the encrypted data to the cloud. It outputs the 
encrypted payload encPayload. 

Arguments  Encrypted payload encPayload 

Return Value  Encrypted payload encPayload 

Exceptions  GeneralSecurityException 
 IOException 

Preconditions  Internet Connection 

Table 13 – uploadData 

Operation storeData / Phase 2 / Encrypted Storage 

Name storeData 

Description The safe storage of the encrypted data to the cloud. The cloud provider stores the 
encrypted uploaded data, without the ability to decrypt the data. 

Arguments  Encrypted payload encPayload 

Return Value  No return value 

Exceptions  GeneralSecurityException 
 IOException 
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Preconditions  User is registered in the cloud provider 

Table 14 – storeData 

Operation scanQR / Phase 3 / Key Establishment 

Name scanQR 

Description The functionality to retrieve the symmetric key for decryption in emergency 
situations.  

Arguments  No arguments 

Return Value  Symmetric key symKey 

Exceptions  GeneralSecurityException 
 IOException 

Preconditions N/A 

Table 15 – scanQR 

Operation requestData / Phase 3 / Encrypted Communication 

Name requestData 

Description The HCP request to retrieve citizens data.  HCP provides the necessary credentials 
(e.g. attributes) for authentication to the cloud and to retrieve the encrypted stored 
payload.  

Arguments  String [] attributes (e.g. username, password, role, hospital, etc.) 

Return Value  Encrypted payload encPayload 

Exceptions  GeneralSecurityException 
 IOException 
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Preconditions  Internet Connection 
 Successful Authorization of the HCP 

Table 16 - requestData 

Operation decrypt / Phase 3 / Encrypted Communication 

Name decrypt 

Description The decryption algorithm takes as input encrypted payload encPayload and the symmetric 
key symKey. It outputs the payload. More specifically, AES 256 block cipher will be used as 
an encryption/decryption algorithm. 

Arguments  Encrypted payload encPayload 
 Symmetric key symKey 

Return Value  Payload payload 

Exceptions  GeneralSecurityException 
 IOException 

Preconditions  Internet Connection 

 Successful retrieval of the encrypted data from the cloud 

Table 17 – decrypt 
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4. CONCLUSIONS AND NEXT STEPS 
In this report, it’s defined the first version of the specification of data encryption mechanisms for mobile 

and web applications. A technical background with state-of-the-art encryption mechanism and crypto 

primitives are also provided. This document presents a first draft of the encryption mechanisms for mobile 

and web applications, reflecting the current understanding by the project consortium. More specifically, 

this deliverable includes the encryption aspects of all the involved architecture components, protocols, and 

scenarios for data at rest and in-transit.  

A second updated version (final version) of this report is planned for March 2021. The following version will 

include more details about the encryption mechanism, possible inclusion of ABE encryption in the 

emergency scenario and further research on the confidential computing for privacy preservation. Last but 

not least, the second version will include any possible updates regarding the current specification based on 

the new knowledge acquired from the second year of the project.   
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