InteropEHRate

EHR in people's hands across Europe

HR INTEROPERABILITY PROTOCOLS

IEHR 1ST ESB MEETING – NOVEMBER 7TH 2019, BERLIN

THANOS KIOURTIS – UNIVERSITY OF PIRAEUS RESEARCH CENTER

USERS' PROBLEM

• Starting point: explain from the point of view of the Final User

PRESENTATION OUTLINE

- Terminologies
- Problem Statement
- State of the Art
- Solutions Implemented
- Conclusions & Next Steps

TERMINOLOGIES

• Protocol:

a set of rules about how to format, transmit and receive data so computer network devices can communicate

• Library:

a set of code that packages the operations (it **implements the functionality of the protocol**)

• API:

a **set of methods** of communication among components that only expose objects or actions the developer needs

USER'S PROBLEM (1/2)

- Healthcare sector terms such as "Machine Learning", "APIs" and "Blockchain", promising to solve the challenge of maintaining and facilitating the exchange and sharing of healthcare information.
- Medical information is stored on paper, and when it has to be shared between providers, it happens by <u>mail</u>, <u>fax</u> or by the <u>patients themselves</u>, who often bring their files from appointment to appointment.
- When exchanging healthcare information and the exchanged data is inaccurate, this leads to:
 - Inefficiency
 - Errors
 - Avoidance of administrative burden
 - Costs
 - Impede the care that patients receive
- 5 7/11/2019 [BERLIN]

Inconsistency in treatment plans, as Health records cannot accompany citizens during physicians' visit

Patients cannot participate actively in their care

USER'S PROBLEM (2/2)

Citizens

- Different web apps to download documents from/to different hospitals/labs
- Different mobile apps to download/send structured data from/to different hospitals/labs
- Country specific apps to download/send health data from/to National EHR
- No control on completeness of health data
- Third party health data cannot be accessed without internet
- Do not want to have data stored in cloud infrastructures

Healthcare Practitioners (HCPs)

- Cannot access health data produced in foreign countries
- Third party health data cannot be accessed without internet
- Delays accessing current patient data → major barrier to effective use of healthcare information
- Increased costs to set up connections to transmit information

Information exchange showstoppers

Survey of HIE professionals identifies what they see as top interoperability challenges

	49%	Products have limited interoperability
	47%	High HIE fees
	42%	Limited 3rd party access to data
31%		Lack of support for some HIEs
28%		Data export challenges
19%		HIE contract terms
		% of all respondents

Source: University of Michigan study on interoperability

STATE OF THE ART (1/3)

Health Information Exchange (HIE)

 Clinicians, nurses, pharmacists, healthcare providers and patients to access and securely share medical information electronically, improving the speed, quality, safety and cost of patient care.

Current Status

Current Status of Health Information Exchange:

- Focus of: (a) modernizing the Centres for Medicare and Medicaid Services' EHR Incentive Program, and (b) Merit-Based Incentive Program (MIPS) Advancing Care Information (ACI) quality reporting category
- EU cases with direct exchange of information only between Healthcare Institutions
- Application vendors are using different protocols upon specific agreements for HIE
- Multiple credentials to authenticate citizens and Healthcare Institutions in the same countries
- No cross border scenarios for HIE in EU

Missing

- HIE between Citizens and Healthcare Institutions
- Open Specification protocols for HIE
- Common authentication method for different Healthcare Institutions (i.e. single set of credentials)
- Common application for every Healthcare Institution

STATE OF THE ART (2/3)

Device to Device (D2D) Data Exchange Systems

 Systems that provide wireless connectivity for transferring data from millimetres to a few hundreds of meters, providing data exchange in absence of internet and constructing service access in local areas.

Current Status

- Key requirements: portable, easy to install, flexible and eliminate the cost of expensive wiring
- Minimize the power consumption at the conditions of the transceiver, namely transmitting, receiving and idle states
- Multiple short-range wireless communication systems: Bluetooth, BLE, NFC, RFID, ANT+, ZigBee, Wi-Fi Direct

Missing

- Focus provided to the security of exchanging data and not the user requirements and the current needs
- **Techniques** for HIE in a short-range distance
- **Common protocol** for cross-border short range distance HIE
- Involvement of cases where internet connection is not available

STATE OF THE ART (3/3)

Remote to Device (R2D) Data Exchange Systems

 Secure communication protocol (and API), using internet, for cross-border exchange of health data among S-EHR and EHR applications.

Current Status

- **Government solutions:** current EU model is based on eHDSI, an infrastructure for cross-border health data exchange between national healthcare information systems of Member States.
- **Commercial solutions:** mobile apps based on proprietary protocols/ proprietary data representation provided to Citizen in order to collect personal health data (coming from heterogeneous sources).

Missing

- eHDSI supports the exchange of data among healthcare organizations and not with citizens
- eHDSI defines its own ad hoc API and uses a standard data model representation (CDA)
- **Commercial apps** often require the healthcare organization to adopt proprietary products, APIs or authentication mechanisms, being limited to specific healthcare organizations

SOLUTIONS IMPLEMENTED (1/5)

D2D Protocol Specification

Series of **specified Bluetooth messages** regarding the **information that is exchanged** (e.g. in terms of successful or failed data exchange), including healthcare related data, between a **healthcare practitioner** and a **citizen**, without the usage of internet connection.

Novelties:

- Based on a globally used short-range distance data exchange protocol (Bluetooth v4.0)
- D2D protocol that can be supported by the main market Operating Systems (Android, Apple)
- Secure and easy-to-use data exchange process with minimum user interactions
- Control with whom the data is being exchanged

SOLUTIONS IMPLEMENTED (3/5)

R2D Protocol Specification

Abstract operations and their corresponding concrete operations based on eHDSI API and FHIR API (R2D extends existing standards) and eIDAS, for remote data exchange.

Novelties:

- Allow Patients / Citizens to download their health data from the NCP of their country.
- Adopt the same standard authentication mechanism (eIDAS) for any EU country.
- Citizens may choose their preferred S-EHR app independently from the country (i.e. a vendor may offer the same app to different countries).

SOLUTIONS IMPLEMENTED (4/5)

R2D Protocol Specification

How a NCP can adopt R2D

• Extending the current eHDSI interaction mechanism allowing EU Citizens to authenticate to a NCP (with restricted access only to their data).

- **Providing** a **FHIR API** (to the NCP) in order to:
 - Adhere to a widely adopted standard
 - Provide additional operations beyond those provided by the eHDSI protocol

SOLUTIONS IMPLEMENTED (5/5)

R2D Protocol Specification

FHIR

eHDSI

I API

Operation getLastRecord(): allows to request the most recent health data of a specific type (specified by requestor)

- **Operation getRecords():** allows to request all health data of a specific type starting from a certain date (specified by requestor)
- **Operation getAllRecords()**: allows to request all health data (of all types) starting from a certain date (specified by requestor)

RestFul Operation

https://ncp/Composition?type=loinc.org/60591-5&_sort=-date&_count=1

HTTP METHOD: GET

Web Service Invocation

PatientService.list(args) extension

SOLVED CHALLENGES

- Specification of new data exchange protocols for different cases (i.e. D2D, R2D)
- Worked within the **bounds** of a **concrete implemented example** tackling specified requirements
- Difficulties in identifying the short-range distance communication technology
- Exchange HL7 FHIR resources through Bluetooth (patient, practitioner, organization)
- Serialization of healthcare information based on Bluetooth

With D2D

- Citizens can receive on their (S-EHR) app, without internet, evaluation data from healthcare providers
- HCPs can access, without internet, to health data that Citizens bring on their S-EHR
- Citizens and HCPs are not tied to specific application vendors
- Citizens are in control of whom they exchange health data with

With R2D

- Citizens are able to directly download their personal healthcare data through a NCP
- Support of FHIR API language, FHIR data model and data representation

GOALS

- Updates on D2D and R2D Libraries' APIs specification
- Testing with different short-range distance communication technologies (e.g. WiFi Direct)
- Communication between S-EHR app and S-EHR Cloud/ communication between S-EHR cloud and Hospitals
- Redesign of specific operations on exchanging health data (based on feedback and testings)
- Make the D2D and R2D libraries' APIs more similar

Thank you!

Q&A time.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 826106

www.interopehrate.eu