

 InteropEHRate project is co-funded by the European Union (EU) Horizon 2020 program under

Grant number 826106.

D4.1

Specification of remote and D2D protocol and APIs

for HR exchange - V1

ABSTRACT

This report describes the initial version of the open specification of the device-to-device (D2D) and the

remote-to-device (R2D) protocols, defined (and to be experimented) in the context of the InteropEHRate

project. These protocols will be used by software applications facilitating health data exchange between

the citizens and the Healthcare professionals. The D2D protocol defines the technology, data structures and

operations to be offered by the interacting applications, allowing the exchange of health data between the

aforementioned stakeholders without the usage of internet. On the other side, the R2D protocol defines

the technology, operations and structure of data used for enabling the exchange of health data between an

Electronic Health Record (EHR) system of a single organization, either a National EHR or to a S-EHR Cloud (a

remote cloud system for the storage of encrypted personal health data) and the citizen with the usage of

the internet.

Delivery Date 11th July 2019

Work Package WP4

Task 4.1

Dissemination Level Public

Type of Deliverable Report

Lead partner UPRC

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 ii

This document has been produced in the context of the InteropEHRate Project which is co-funded

by the European Commission (grant agreement n° 826106). All information provided in this

document is provided "as is" and no guarantee or warranty is given that the information is fit for

any particular purpose.

This work by Parties of the InteropEHRate Consortium is licensed
under a Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/).

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 iii

CONTRIBUTORS

 Name Partner

Contributors Thanos Kiourtis, Argyro Mavrogiorgou,

Dimitris Laliotis, Aikaterini Aggeli

UPRC

 Alessio Graziani ENG

 Martin Marot, Julien Henrard A7

 Nicu Jalba SIVECO

Reviewers Gábor Bella, Simone Bocca UNITN

 Francesco Torelli ENG

LOGTABLE

Version Date Change Author Partner

0.1 2019-05-06 First draft of ToC Thanos Kiourtis,

Argyro

Mavrogiorgou

UPRC

0.2 2019-05-10 Finalized ToC Thanos Kiourtis,

Argyro

Mavrogiorgou

UPRC

0.3 2019-05-21 First version of diagrams, state

of the art analysis and

description of D2D protocol

Thanos Kiourtis,

Argyro

Mavrogiorgou

UPRC

0.4 2019-05-25 First version of diagrams, state

of the art analysis and

description of R2D protocol

Alessio Graziani,

Francesco Torelli

ENG

0.5 2019-06-02 Description of S-EHR

Application

Martin Marot, Julien

Henrard

A7

0.6 2019-06-05 Description of HCP Application Nicu Jalba SIVECO

0.7 2019-06-07 Updates on R2D protocol Alessio Graziani,

Francesco Torelli

ENG

0.8 2019-06-14 Updates on D2D protocol and

finalization of the overall

Thanos Kiourtis,

Argyro

UPRC

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 iv

context of the deliverable Mavrogiorgou

0.9 2019-06-16 Deliverable sent for internal

review

Thanos Kiourtis,

Argyro

Mavrogiorgou

UPRC

1.0 2019-06-21 First version of internal review Francesco Torelli ENG

1.1 2019-06-22 Deliverable sent for second

internal review

Thanos Kiourtis,

Argyro

Mavrogiorgou

UPRC

1.2 2019-07-10 Finalized and sent for Quality

Review

Thanos Kiourtis,

Argyro

Mavrogiorgou,

Alessio Graziani,

Francesco Torelli

UPRC, ENG

1.3 2019-07-10 Completed Quality Review Argyro

Mavrogiorgou

UPRC

Vfinal 2019-07-11 Final check and version for
submission

Laura Pucci ENG

ACRONYMS

Acronym Description

D2D Device-to-Device

R2D Remote-to-Device

HER Electronic Health Record

S-HER Smart Electronic Health Record

NFC Near Field Communications

RFID Radio Frequency Identification

WBAN Wireless Body Area Networks

WPAN Wireless Personal Area Networks

WLAN Wireless Local Area Networks

VAN Vehicle Area Networks

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 v

WSN Wireless Sensor Networks

EMR Electronic Medical Record

BLE Bluetooth Low Energy

IEEE Institute of Electrical and Electronics Engineers

EDR Enhanced Data Rate

GATT Generic Attribute Profile

LTE Long-Term Evolution

AoA Angle of Arrival

AoD Angle of Departure

P2P Peer-to-Peer

ISM Industrial, Scientific, and Medical

GUI Graphical User Interface

UI User Interface

UX User Experience

ITU International Telecommunication Union

MD2D Mobile Device-to-Device

TD2D Terminal Device-to-Device

MD2DI Mobile Device-to-Device Interface

TD2DI Terminal Device-to-Device Interface

HCO Healthcare Organization

CEF Connecting Europe Facility

eHDSI eHealth Digital Service Infrastructure

NCP National Contact Points

API Application Programming Interface

FHIR Fast Healthcare Interoperability Resources

UML Unified Modeling Language

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 vi

SQL Structured Query Language

R2DI Remote-to-Device Interface

UUID

Universally Unique Identifier

SDDB

Service Discovery DataBase

SPP

Serial Port Profile

RFCOMM

Radio Frequency Communication

LMP

Link Manager Protocol

L2CAP

Logical Link Control and Adaptation Protocol

OSI

Open Systems Interconnection

GSM

Global System for Mobile Communication

SDP

Service Discovery Protocol

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 vii

TABLE OF CONTENT

1. INTRODUCTION ... 1

1.1. Scope of the document ... 1

1.2. Intended audience ... 1

1.3. Structure of the document .. 2

1.4. Updated with respect to previous version (if any) .. 2

2. D2D PROTOCOL: SHORT RANGE HEALTH DATA EXCHANGE ... 3

2.1. D2D Protocol Scope ... 3

2.2. Related Work ... 4

2.2.1. Short Range Wireless Communication .. 4

2.2.2. InteropEHRate D2D Approach ... 12

2.3. D2D Protocol Description .. 14

2.3.1. Conceptual D2D ... 15

2.3.2. Involved Applications (A7, SIVECO) ... 22

2.3.2.1. S-EHR Application .. 22

2.3.2.2. HCP Application (SIVECO) .. 22

2.3.3. D2D Interface Interactions .. 22

2.3.4. D2D over Bluetooth ... 25

2.3.4.1. D2D over Android Bluetooth API ... 28

2.3.4.2. D2D Commands & Replies Specification ... 32

3. R2D PROTOCOL: REMOTE HEALTH DATA EXCHANGE ... 39

3.1. R2D Protocol Scope ... 39

3.2. Related Work ... 40

3.3. R2D Protocol Description .. 43

3.3.1. Conceptual R2D ... 43

3.3.2. Involved Applications (A7, ENG) .. 49

3.3.2.1. S-EHR Application .. 49

3.3.2.2. Extended NCP .. 50

3.3.3. R2D Interface Interactions ... 50

3.3.4. R2D over FHIR .. 52

3.3.5. R2D over extended eHDSI ... 63

4. CONCLUSIONS AND NEXT STEPS ... 66

REFERENCES... 67

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 viii

ANNEX.. 69

LIST OF FIGURES

Figure 1 - D2D protocol scope ... 3

Figure 2 - D2D protocol interfaces .. 15

Figure 3 - MD2D interface operations ... 16

Figure 4 - TD2D interface operations .. 19

Figure 5 - D2D protocol interactions ... 23

Figure 6 - Bluetooth pairing process ... 25

Figure 7 - Protocols and entities of the Bluetooth SPP profile ... 27

Figure 8 - D2D exchanged messages ... 32

Figure 9 - R2D protocol scope ... 39

Figure 10 - eHDSI system architecture .. 40

Figure 11 - Common eHDSI domain .. 42

Figure 12 - Common eHDSI domain .. 42

Figure 13 - R2D interface operations... 44

Figure 14 - Conceptual data model ... 45

Figure 15 - R2D protocol interactions ... 51

LIST OF TABLES

Table 1 - Comparison between short-range wireless communication technologies 12

Table 2 - Size of files that will be exchanged through the D2D protocol .. 14

Table 3 - Communication Requirements ... 69

Table 4 - Security Requirements ... 70

Table 5 - User Interaction Requirements .. 70

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 1

1. INTRODUCTION

1.1. Scope of the document
The main goal of this document is to describe the initial version of the specification of both the device-to-

device (D2D) and the remote-to-device (R2D) protocols. In essence, the D2D protocol specifies a series of

specified bluetooth messages regarding the information that is being exchanged (e.g. in terms of successful

or failed data exchange) and healthcare related data between a healthcare practitioner (utilizing a web

application (HCP app)) and a citizen (utilizing a mobile application (S-EHR app)), without the usage of

internet connection. The R2D protocol defines a set of operations in terms of which its interface depends

on, as well as the structure of the data that can be used for the exchange of health data between any

electronic health record (EHR) or S-EHR Cloud (a remote cloud system used by citizens for the storage of

their encrypted health data) and a S-EHR (a kind of mobile application of a citizen), with the usage of

internet. Henceforth, both the D2D and the R2D protocols will be used for standardizing how software

applications exchange health data with the mobile application (S-EHR app) of the citizen.

The current document outlines for both protocols (i.e. D2D and R2D will be realized as a library enabling its

exploitation in various implementation contexts for health data exchange) a detailed description of their

functionality, accompanied by an explanation of their separate purposes of existence. Moreover, the

deliverable describes the research that was undertaken for each different field regarding short range and

remote, data - and health data - exchange, for designing each corresponding protocol.

Having in mind that there exist several short-range communication techniques that could be used for this

data exchange without using internet connection (e.g. Wi-Fi Direct, Bluetooth Low Energy, Bluetooth

Classic), an initial version of the D2D protocol is currently specified based on the Bluetooth Classic. The

reason for this choice is that we wanted to first identify the messages and the way that they would be

exchanged, in the platform of Android mobile devices that is currently used in most of the mobile devices,

and for that reason the specification of the D2D protocol is currently based on the Android Bluetooth API.

In the next version of the D2D protocol specification (March 2020), the D2D protocol specification will be

independent from any API or platform (i.e. Operating System), while it might be based upon a different

short-range communication technique - based on our research, in order for any developer that would like

to use this protocol to be able to use the listed operations or develop her own operations, in order to

implement the corresponding data exchange.

To this end, it should also be mentioned that the current document received as input the reference

architecture as elaborated in deliverable D2.4 - InteropEHRate Architecture - V1 [D2.4], and the user

requirements that were analysed and presented in deliverable D2.1 - User Requirements for cross-border

HR integration - V1 [D2.1].

1.2. Intended audience
The current document is mainly intended for developers, and manufacturers that are interested in

designing and building either mobile or web applications that need to exploit and reuse either the D2D or

the R2D or both these two functionalities of the InteropEHRate framework, in the context of their

applications. As a result, this audience will be able to offer the aforementioned separate functionalities in

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 2

their developed applications, since both the D2D and the R2D protocols can be easily integrated and reused

by other systems and applications. Apart from this, the document is intended to researchers as well, as

they may be interested in understanding the way that those two libraries work, influenced by them, and

possibly extending and updating them.

1.3. Structure of the document
The current document is organized in the following Sections:

● Section 1 (the current section) introduces the overall concept of the document, defining its scope,

intended audience, and relation to the other project tasks and reports.

● Section 2 outlines the short range health data exchange protocol (D2D), describing in deep detail

the purpose of the existence of the protocol, whereas stating the research that was undertaken for

concluding into the design of the protocol, and the overall description of it.

● Section 3 describes the remote health data exchange protocol (R2D), explaining in deep detail the

purpose of the existence of the protocol, whereas stating the research that was undertaken for

concluding into the design of the protocol, and the overall description of it.

● Section 4 outlines the conclusions of the current document, including the future developments and

updates of the two libraries.

1.4. Updated with respect to previous version (if any)
Since this document is the initial version of the design and the specification of the D2D and R2D protocols,

there does not exist any update with regards to previous related documents.

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 3

2. D2D PROTOCOL: SHORT RANGE HEALTH DATA EXCHANGE
The D2D protocol defines the set of operations that allow the exchange of health data between a S-EHR

App and a near HCP App (i.e. in the context of a distance of up to 10m long) without the usage of internet

(in opposition to the R2D that is the protocol to exchange health data remotely, including the usage of

internet).

The next section of this document, provides a detailed description on the technologies that have been

studied and implemented towards the realization of the D2D protocol, the context in which the D2D will be

used, and of all the conditions that have influenced the decisions taken in the process carried out to define

the D2D specifications.

2.1. D2D Protocol Scope
The purpose of the D2D protocol is to propose a series of specified bluetooth messages regarding the

information that is being exchanged (e.g. in terms of successful or failed data exchange) and healthcare

related data between a healthcare practitioner and a citizen, without the usage of internet connection. This

protocol is based on short-range wireless technologies and in particular Bluetooth, to be adopted at EU

level, for secure exchange of health records between a smart mobile device and a health information

system in the form of a web application. The smart device will use the S-EHR app (i.e. application that

serves the purposes of the D2D from the side of the citizen), while the health information system will use

the HCP app (i.e. application that serves the purposes of the D2D from the side of the healthcare

practitioner), that will be used by the citizen and the healthcare practitioner accordingly. According to the

objectives defined by the InteropEHRate consortium, the first version of the D2D protocol focuses on

exchanging medical data (e.g. vital signs, evaluation data), from a citizen’s S-EHR app to an HCP app using

Bluetooth technology.

Figure 1 - D2D protocol scope

Bluetooth technology is most commonly associated with exchanging data between two bluetooth enabled

devices in short distance (±10 meters), through which a bluetooth-enabled device as soon as it receives the

initialization advertisement message from another bluetooth-enabled device, it establishes a connection to

it, being thus able to exchange and display information between them, without needing any other

technologies or types of connection (e.g. internet connection). Adopting a similar paradigm, the proposed

D2D protocol will facilitate the information exchange between patients (i.e. through smartphones) and

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 4

healthcare practitioners (i.e. through a computer with a bluetooth adapter), without the usage of central

cloud services or any other parties.

In order to accomplish all the aforementioned tasks, the D2D protocol will define the Bluetooth services
(represented by the interface TD2DI) to be offered by a healthcare organization to share health data
contained in their EHR with the S-EHR app, as well as the Bluetooth services (represented by the interface
MD2DI) to be offered by the S-EHR app for receiving requests from the HCP app of the Healthcare
Organization Information System. The D2D protocol will also exploit D2D Security protocol (which
interfaces are part of the R2DI and MD2DI) for performing Identity Management, Consent Management,
and Authorization Management, that will be integrated into the overall functionality of the D2D protocol.

2.2. Related Work

2.2.1. Short Range Wireless Communication

Short-range wireless communications systems have to do with a wide range of scenarios, technologies and

requirements. There is not any specific definition of such systems though one can always classify short-

range wireless systems according to their typical reach or coverage. Henceforth, short-range wireless

communications can be defined as the systems that aim to provide wireless connectivity within a local

sphere of interaction. Short-range wireless systems deal with transferring of data from millimeters to a few

hundreds of meters, which are not only providing wireless connectivity in the immediate proximity, but in a

broader area they can be defined as technologies that are used to construct service access in local areas.

Together with wide/metropolitan area cellular systems, short-range wireless systems represent the two

main developing directions in today’s wireless communications scene having certain common parts as well

as various differences from cellular systems. The main goal is to maximize the supported data throughput

for both types of wireless networks, and as a result a detailed comparison between them is not easily

implemented. There is a great deal of cooperation between short-range and cellular networks, and in many

cases exploiting their full characteristics results in very efficient solutions.

The short-range wireless systems include NFC for very close connectivity, RFID ranging from centimeters up

to a few hundred meters, WBAN providing wireless access in the close vicinity of a person, WPAN offering

users in their surroundings of up to ten meters or so, WLAN, the de facto local connectivity for indoor

scenarios covering typically up to a hundred meters around the access point, VAN involving distances of up

to several hundred meters and WSN, reaching even further. Short-range wireless communication systems

include a great diversity in possible air interface solutions, topologies as well as achievable data throughput

and supported mobility. In general, short-range networks have ad hoc distributed architectures allowing

direct and multi-hop connectivity among nodes. Centralized access is also possible, as in WLAN, which in

fact supports both centralized and distributed topologies. Data throughput requirements for short-range

wireless systems are very broad, from some hundred bits per second in simple RFID systems up to 10 Gbps

and beyond in WLAN systems, for instance.

One of the key requirements for short-range wireless systems is low power consumption , particularly

taking into account that transceivers are in many cases battery-driven. Particular attention is necessary

when designing short-range wireless devices while minimizing the power consumption at the three basic

conditions of the transceiver, namely transmitting, receiving and idle states. Low cost is another important

factor to take into consideration when designing short-range wireless systems. Furthermore, minimizing

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 5

size and weight are also quite often imperative engineering principles that need to be applied by the

designer of such communication systems. Another important aspect of short-range wireless

communications networks is their relationship to other existing wireless networks and their possible

interaction.

These days, there is more wireless technology in use than ever before. Wireless technology is portable,

easy to install, flexible and eliminates the cost of expensive wiring. With the explosion of available wireless

devices, there has also been a big increase of wireless protocols and standards to support all of that

technology. These include several short-range wireless communication technologies that transmit shorter

distances than other long range technologies, making them great for certain applications. Below is a short

list of the most commonly used short-range wireless communication standards and technologies.

ANT+ [ANT+]

ANT and ANT+ are sensor network technologies used for collecting and transferring sensor data. This short-

range wireless communication technology is a type of personal-area network (PAN) that features low

power consumption and long battery life. It divides the 2.4 GHz band into 1 MHz channels and

accommodates multiple sensors. It is primarily used for short-range, low-data-rate sensor applications such

as sports monitors, wearables, wellness products, home health monitoring, vehicle tire pressure sensing

and in household items that can be controlled remotely such as TVs, lights and appliances. It can be

configured to spend long periods in a low-power “sleep” mode (consuming of the order of microamps of

current), wake up briefly to communicate (when consumption rises to a peak of 22mA (at -5dB) during

reception and 13.5mA (at -5 dB) during transmission) and return to sleep mode. Average current

consumption for low message rates is less than 60 microamps on some devices. Each ANT channel consists

of one or more transmitting nodes and one or more receiving nodes, depending on the network topology.

Any node can transmit or receive, so the channels are bi-directional. ANT accommodates three types of

messaging: broadcast, acknowledged, and burst.

● Broadcast is a one-way communication from one node to another (or many). The receiving node(s)

transmit no acknowledgment, but the receiving node may still send messages back to the

transmitting node. This technique is suited to sensor applications and is the most economical

method of operation.

● Acknowledged messaging confirms receipt of data packets. The transmitter is informed of success

or failure, although there are no retransmissions. This technique is suited to control applications.

● Burst messaging is a multi-message transmission technique using the full data bandwidth and

running to completion. The receiving node acknowledges receipt and informs of corrupted packets

that the transmitter then re-sends. The packets are sequence numbered for traceability. This

technique is suited to data block transfer where the integrity of the data is paramount.

Bluetooth/ BLE [BLUETOOTH]

Bluetooth is covered by the IEEE 802.15.1 standard. Originally created as an alternative to cabled RS-232,

Bluetooth is now used to send data from PANs and fixed and mobile devices. This plug-and-play technology

utilizes the 2.4 -2.485 GHz band and has a standard range of 10 meters, but it can be extended to 100

meters at maximum power with a clear path. BLE has a simpler design and is a direct competitor of ANT+,

focusing on health and medical applications.

http://www.l-com.com/blog/post/2015/12/03/Long-Live-RS-232!.aspx

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 6

Bluetooth is a packet-based short-range wireless communication technology with a master/slave

architecture, where the devices can switch roles, by agreement, and the slave can become the master. One

master may communicate with up to seven slaves in a piconet. All devices share the master's clock. Packet

exchange is based on the basic clock, defined by the master, which ticks at 312.5 µs intervals. Two clock

ticks make up a slot of 625 µs, and two slots make up a slot pair of 1250 µs. In the simple case of single-slot

packets, the master transmits in even slots and receives in odd slots. The slave, conversely, receives in even

slots and transmits in odd slots. Packets may be 1, 3 or 5 slots long, but in all cases the master's

transmission begins in even slots and the slave's in odd slots. The master chooses which slave device to

address by switching rapidly from one device to another in a round-robin fashion. Since it is the master that

chooses which slave to address, whereas a slave is supposed to listen in each receive slot, being a master is

a lighter burden than being a slave. Being a master of seven slaves is possible; being a slave of more than

one master is possible. The specification is vague as to required behavior in scatternets. To use Bluetooth

wireless technology, a device must be able to interpret certain Bluetooth profiles, which are definitions of

possible applications and specify general behaviors that Bluetooth-enabled devices use to communicate

with other Bluetooth devices. These profiles include settings to parameterize and to control the

communication from the start. Adherence to profiles saves the time for transmitting the parameters anew

before the bi-directional link becomes effective. There are a wide range of Bluetooth profiles that describe

many different types of applications or use cases for devices. Bluetooth has different versions, with either

minor or major differences among them, based on their implementation and usage. The version history of

Bluetooth is depicted below:

● Bluetooth 1.0 and 1.0B: This version had many problems, and manufacturers had difficulty making

their products interoperable. They included mandatory Bluetooth hardware device address

transmission in the Connecting process, which was a major setback for certain services planned for

use in Bluetooth environments

● Bluetooth 1.1: This version was ratified as an IEEE Standard 802.15.1–2002. It included many error

fixes from the v1.0B specifications, including the possibility of non-encrypted channels, and Signal

Strength Indicator for the received data.

● Bluetooth 1.2: This version included faster Connection and Discovery, adaptive frequency-hopping

spread spectrum, which improved the resistance to radio frequency interference by avoiding the

use of crowded frequencies in the hopping sequence. It also included higher transmission speeds

than in v1.1, and improved quality of audio links by allowing retransmissions of corrupted packets,

and increasing audio latency to provide better concurrent data transfer.

● Bluetooth 2.0: This version of the Bluetooth Core Specification was released in 2004. The main

difference is the introduction of an EDR for faster data transfer. The bit rate of EDR is 3 Mbit/s,

although the maximum data transfer rate is 2.1 Mbit/s. EDR can provide a lower power

consumption through a reduced duty cycle. The specification is published as Bluetooth v2.0 + EDR,

which implies that EDR is an optional feature. Aside from EDR, the v2.0 specification contains other

minor improvements, and products may claim compliance to "Bluetooth v2.0" without supporting

the higher data rate.

● Bluetooth 2.1: This version of Bluetooth Core Specification includes secure simple pairing,

improving the pairing experience for Bluetooth devices, while increasing the use and strength of

security. It also allows improvements, including extended inquiry response, which provides more

information during the inquiry procedure to allow better filtering of devices before connection, and

sniff subrating that reduces the power consumption in low-power mode.

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 7

● Bluetooth 3.0: This version of the Bluetooth Core Specification was adopted in 2009. Bluetooth

v3.0 provides theoretical data transfer speeds of up to 24 Mbit/s, though not over the Bluetooth

link itself. Instead, the Bluetooth link is used for negotiation and establishment, and the high data

rate traffic is carried over a colocated 802.11 link. The main new feature is Alternative MAC/PHY,

the addition of 802.11 as a high-speed transport. The high-speed part of the specification is not

mandatory, and hence only devices that display the "+HS" logo actually support Bluetooth over

802.11 high-speed data transfer. A Bluetooth v3.0 device without the "+HS" suffix is only required

to support features introduced in Core Specification Version 3.0 or earlier Core Specification

Addendum 1.

● Bluetooth 4.0: This version of the Bluetooth Core Specification version 4.0 (Bluetooth Smart) has

been adopted as of 2010. It includes Classic Bluetooth, Bluetooth high speed and BLE short-range

wireless communication technologies. Bluetooth high speed is based on Wi-Fi, and Classic

Bluetooth consists of legacy Bluetooth short-range wireless communication technologies. BLE,

previously known as Wibree, is a subset of Bluetooth v4.0 with an entirely new short-range wireless

communication technology stack for rapid build-up of simple links. As an alternative to the

Bluetooth standard short-range wireless communication technologies that were introduced in

Bluetooth v1.0 to v3.0, it is aimed at very low power applications powered by a coin cell. Chip

designs allow for two types of implementation, dual-mode, single-mode and enhanced past

versions. Compared to Classic Bluetooth, BLE is intended to provide considerably reduced power

consumption and cost while maintaining a similar communication range. In a single-mode

implementation, only the low energy short-range wireless communication technology stack is

implemented. The compliant architecture shares all of Classic Bluetooth's existing radio and

functionality resulting in a negligible cost increase compared to Classic Bluetooth. Cost-reduced

single-mode chips, which enable highly integrated and compact devices, feature a lightweight Link

Layer providing ultra-low power idle mode operation, simple device discovery, and reliable point-

to-multipoint data transfer with advanced power-save and secure encrypted connections at the

lowest possible cost. General improvements in version 4.0 include the changes necessary to

facilitate BLE modes, as well as the GATT and Security Manager services with Advanced Encryption

Standard.

● Bluetooth 4.1: This version is an incremental software update to Bluetooth Specification v4.0, and

not a hardware update. The update incorporates some Bluetooth Core Specifications and adds new

features that improve consumer usability. These include increased co-existence support for LTE,

bulk data exchange rates, and aid developer innovation by allowing devices to support multiple

roles simultaneously. New features of this specification include mobile Wireless Service

Coexistence Signaling, Train Nudging and Generalized Interlaced Scanning, Low Duty Cycle Directed

Advertising, L2CAP Connection Oriented and Dedicated Channels with Credit-Based Flow Control,

Dual Mode and Topology, LE Link Layer Topology, 802.11n PAL, Audio Architecture Updates for

Wide Band Speech, Fast Data Advertising Interval, and Limited Discovery Time.

● Bluetooth 4.2: This version includes major areas of improvement in the domain of Low Energy

Secure Connection with Data Packet Length Extension. It also includes Link Layer Privacy with

Extended Scanner Filter Policies, Internet Protocol Support Profile version 6 ready for Bluetooth

Smart things to support connected home, and supports the fact that older Bluetooth hardware may

receive 4.2 features such as Data Packet Length Extension and improved privacy via firmware

updates.

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 8

● Bluetooth 5.0: This version has new features mainly focusing on emerging Internet of Things

technology. Bluetooth 5.0 provides for BLE, options that can double the speed (2 Mbit/s burst) at

the expense of range, or up to fourfold the range at the expense of data rate, and eightfold the

data broadcasting capacity of transmissions, by increasing the packet lengths. The increase in

transmissions could be important for Internet of Things devices, where many nodes connect

throughout the whole house. Bluetooth 5 adds functionality for connectionless services such as

location-relevant navigation of low-energy Bluetooth connections.

● Bluetooth 5.1: This version supports major areas of improvement including AoA and AoD which are

used for location and tracking of devices, Advertising Channel Index, GATT Caching.

EnOcean [ENOCEAN]

This system is self-powered and able to wirelessly transmit data by using ultra-low power consumption and

energy collecting technology. Instead of a power supply, EnOcean’s wireless sensor technology collects

energy from the air. Energy from the environment, such as light, pressure, kinetic motion and temperature

differences, is harvested and used to transmit a signal up to 30 meters indoors using a very small amount of

energy. In the US, EnOcean runs on the 315 MHz and 902 MHz bands. In Europe, it uses the 868 MHz

frequency band and in Japan, it operates on the 315 MHz and 928 MHz frequency bands. EnOcean

technology is based on the energetically efficient exploitation of slight mechanical motion and other

potentials from the environment, such as indoor light and temperature differences, using the principles of

energy harvesting. In order to transform such energy fluctuations into usable electrical energy,

electromagnetic, solar, and thermoelectric energy converters are used. EnOcean-based products (such as

sensors and light switches) perform without batteries and are engineered to operate maintenance-free.

The radio signals from these sensors and switches can be transmitted wirelessly over a distance of up to

300 meters in the open and up to 30 meters inside buildings. Early designs from the company used piezo

generators, but were later replaced with electromagnetic energy sources to reduce the operating force (3.5

newtons), and increase the service life to 100 operations a day for more than 25 years. EnOcean wireless

data packets are relatively small, with the packet being only 14 bytes long and are transmitted at 125

kbit/s. RF energy is only transmitted for the 1's of the binary data, reducing the amount of power required.

Three packets are sent at pseudo-random intervals reducing the possibility of RF packet collisions. Modules

optimized for switching applications transmit additional data packets on release of push-button switches,

enabling other features such as light dimming to be implemented. The transmission frequencies used for

the devices are 902 MHz, 928.35 MHz, 868.3 MHz and 315 MHz. On 2017, EnOcean unveiled a series of

light switches utilizing BLE radio (2.4 GHz).

NFC [NFC]

NFC is an ultra-short-range technology created for contactless communication between devices. It is often

used for secure payment applications, fast passes and similar applications. Operating on the 13.56 MHz ISM

frequency, NFC has a maximum range of around 20 cm, which provides a more secure connection that is

usually encrypted. Many smart phones already include an NFC tag. NFC short-range wireless

communication technologies established a generally supported standard. When one of the connected

devices has Internet connectivity, the other can exchange data with online services. NFC-enabled portable

devices can be provided with application software, for example, to read electronic tags or make payments

when connected to an NFC-compliant apparatus. Earlier close-range communication used technology that

was proprietary to the manufacturer for applications such as stock tickets, access control and payment

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 9

readers. Like other "proximity card" technologies, NFC employs electromagnetic induction between two

loop antennas when NFC-enabled devices—for example a smartphone and a printer—exchange

information, operating within the globally available unlicensed radio frequency ISM band of 13.56 MHz on

ISO/IEC 18000-3 air interface at rates ranging from 106 to 424 kbit/s. NFC tags contain data and are

typically read-only, but may be writable. They can be custom-encoded by their manufacturers or use NFC

Forum specifications. The tags can securely store personal data such as debit and credit card information,

loyalty program data, PINs and networking contacts, among other information. The NFC Forum defines four

types of tags that provide different communication speeds and capabilities in terms of configurability,

memory, security, data retention and write endurance. Tags currently offer between 96 and 4,096 bytes of

memory.

The two modes for NFC are:

● Passive: The initiator device provides a carrier field and the target device answers by modulating

the existing field. In this mode, the target device may draw its operating power from the initiator-

provided electromagnetic field, thus making the target device a transponder.

● Active: Both initiator and target device communicate by alternately generating their own fields. A

device deactivates its RF field while it is waiting for data. In this mode, both devices typically have

power supplies.

It should be noted that each full NFC device can work in three modes:

● NFC card emulation: It deals with NFC-enabled devices such as smartphones to act like smart cards,

allowing users to perform transactions such as payment or ticketing.

● NFC reader/writer: It enables NFC-enabled devices to read information stored on inexpensive NFC

tags embedded in labels or smart posters.

● NFC peer-to-peer: It enables two NFC-enabled devices to communicate with each other to

exchange information in an ad hoc fashion.

RFID [RFID]

RFID uses small, flat, cheap tags that can be attached to anything and used for identification, location,

tracking and inventory management. When a reader unit is nearby, it transmits a high-power RF signal to

the tags and reads the data stored in their memory. Low frequency RFID uses the 125-134 kHz band, high

frequency RFID uses the 13.56 MHz ISM band and Ultra-high frequency RFID uses the 125-134 kHz band.

With multiple ISO/IEC standards available for RFID, this technology has replaced bar codes in some

industries. It uses electromagnetic fields to automatically identify and track tags attached to objects. The

tags contain electronically stored information. Passive tags collect energy from a nearby RFID reader's

interrogating radio waves. Active tags have a local power source (such as a battery) and may operate

hundreds of meters from the RFID reader. Unlike a barcode, the tag need not be within the line of sight of

the reader, so it may be embedded in the tracked object. RFID is one method of automatic identification

and data capture.

ZigBee [ZIGBEE]

ZigBee is the standard of the ZigBee Alliance. The path of a message in this network zig-zags like a bee,

hence the name. It is a software short-range wireless communication technology that uses the 802.15.4

transceiver as a base and is meant to be cheaper and simpler than other WPANs, like Wi-Fi or Bluetooth.

ZigBee is able to build large mesh networks for sensor monitoring, handling up to 65,000 nodes, and it can

also support multiple types of radio networks such as point-to-point and point-to-multipoint. It has a data

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 10

rate of 250 kB/s and can transfer wireless data over a distance of up to 100m. ZigBee can be used for a

range of applications including remote patient monitoring, wireless lighting and electrical meters, traffic

management systems, consumer TV and factory automation, to name a few.

Zigbee devices are of three kinds:

● Zigbee Coordinator: The most capable device, the Coordinator forms the root of the network tree

and might bridge to other networks. There is precisely one Zigbee Coordinator in each network

since it is the device that started the network originally (the Zigbee LightLink specification also

allows operation without a Zigbee Coordinator, making it more usable for off-the-shelf home

products). It stores information about the network, including acting as the Trust Center &

repository for security keys.

● Zigbee Router: As well as running an application function, a Router can act as an intermediate

router, passing on data from other devices.

● Zigbee End Device: Contains just enough functionality to talk to the parent node (either the

Coordinator or a Router); it cannot relay data from other devices. This relationship allows the node

to be asleep a significant amount of the time thereby giving long battery life. A Zigbee End

Devicerequires the least amount of memory, and, therefore, can be less expensive to manufacture

than a Zigbee Router or Zigbee Coordinator.

The current Zigbee short-range wireless communication technologies support beacon and non-beacon

enabled networks.

● In non-beacon-enabled networks, an unslotted CSMA/CA channel access mechanism is used. In this

type of network, Zigbee Routers typically have their receivers continuously active, requiring a more

robust power supply. However, this allows for heterogeneous networks in which some devices

receive continuously, while others only transmit when an external stimulus is detected. The typical

example of a heterogeneous network is a wireless light switch: The Zigbee node at the lamp may

constantly receive, since it is connected to the mains supply, while a battery-powered light switch

would remain asleep until the switch is thrown. The switch then wakes up, sends a command to the

lamp, receives an acknowledgment, and returns to sleep. In such a network the lamp node will be

at least a Zigbee Router, if not the Zigbee Coordinator; the switch node is typically a Zigbee End

Device.

● In beacon-enabled networks, the special network nodes called Zigbee Routers transmit periodic

beacons to confirm their presence to other network nodes. Nodes may sleep between beacons,

thus lowering their duty cycle and extending their battery life. Beacon intervals depend on data

rate; they may range from 15.36 milliseconds to 251.65824 seconds at 250 kbit/s, from 24

milliseconds to 393.216 seconds at 40 kbit/s and from 48 milliseconds to 786.432 seconds at 20

kbit/s. However, low duty cycle operation with long beacon intervals requires precise timing, which

can conflict with the need for low product cost.

In general, the Zigbee short-range wireless communication technologies minimize the time the radio is on,

so as to reduce power use. In beaconing networks, nodes only need to be active while a beacon is being

transmitted. In non-beacon-enabled networks, power consumption is decidedly asymmetrical: Some

devices are always active while others spend most of their time sleeping.

Wi-Fi Direct [WIFIDIRECT]

Wi-Fi Direct, initially called Wi-Fi P2P, is a Wi-Fi standard enabling devices to easily connect with each other

without requiring a wireless access point. Wi-Fi Direct allows two devices to establish a direct Wi-Fi

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 11

connection without requiring a wireless router. Hence, Wi-Fi Direct is single radio hop communication, not

multihop wireless communication, unlike wireless ad hoc networks and mobile ad hoc networks. Wi-Fi ad

hoc mode, however, supports multi-hop radio communications, with intermediate Wi-Fi nodes as packet

relays. One advantage of Wi-Fi Direct is the ability to connect devices even if they are from different

manufacturers. Only one of the Wi-Fi devices needs to be compliant with Wi-Fi Direct to establish a peer-

to-peer connection that transfers data directly between them with greatly reduced setup. Wi-Fi Direct

negotiates the link with a Wi-Fi Protected Setup system that assigns each device a limited wireless access

point. The “pairing” of Wi-Fi Direct devices can be set up to require the proximity of a near field

communication, a Bluetooth signal, or a button press on one or all the devices. When a device enters the

range of the Wi-Fi Direct host, it can connect to it, and then gather setup information using a Protected

Setup-style transfer. Connection and setup is so simplified that it may replace Bluetooth in some situations.

Wi-Fi Direct-certified devices can connect one-to-one or one-to-many and not all connected products need

to be Wi-Fi Direct-certified. One Wi-Fi Direct enabled device can connect to legacy Wi-Fi certified devices.

The Wi-Fi Direct certification program is developed and administered by the Wi-Fi Alliance, the industry

group that owns the “Wi-Fi” trademark. The specification is available for purchase from the Wi-Fi Alliance

Z-Wave [ZWAVE]

Z-Wave is a wireless communications short-range wireless communication technology used primarily for

home automation. It is a mesh network using low-energy radio waves to communicate from appliance to

appliance, allowing for wireless control of residential appliances and other devices. A Z-Wave system can be

controlled via the Internet from a smartphone, tablet or computer, and locally through a smart speaker,

wireless keyfob, or wall-mounted panel with a Z-Wave gateway or central control device serving as both

the hub controller and portal to the outside. Z-Wave is designed to provide reliable, low-latency

transmission of small data packets at data rates up to 100kbit/s. The throughput is 40kbit/s (9.6kbit/s using

old chips) and suitable for control and sensor applications, unlike Wi-Fi and other IEEE 802.11-based

wireless LAN systems that are designed primarily for high data rates. Communication distance between two

nodes is about 30 meters (40 meters with 500 series chip), and with message ability to hop up to four times

between nodes, it gives enough coverage for most residential houses. Modulation is by Manchester

channel encoding. Z-Wave uses the Part 15 unlicensed ISM band. It operates at 868.42 MHz in Europe, at

908.42 MHz in the North America and uses other frequencies in other countries depending on their

regulations. This band competes with some cordless telephones and other consumer electronics devices,

but avoids interference with Wi-Fi, Bluetooth and other systems that operate on the crowded 2.4 GHz

band. The lower layers, MAC and PHY, are described by ITU-T G.9959 and fully backwards compatible. In

2012, the ITU included the Z-Wave PHY and MAC layers as an option in its G.9959 standard for wireless

devices under 1 GHz. Data rates include 9600 bps and 40 kbps, with output power at 1 mW or 0 dBm.

Devices can communicate to one another by using intermediate nodes to actively route around and

circumvent household obstacles or radio dead spots that might occur in the multipath environment of a

house. A message from node A to node C can be successfully delivered even if the two nodes are not within

range, providing that a third node B can communicate with nodes A and C. If the preferred route is

unavailable, the message originator will attempt other routes until a path is found to the C node. Therefore,

a Z-Wave network can span much farther than the radio range of a single unit; however, with several of

these hops a slight delay may be introduced between the control command and the desired result.

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 12

2.2.2. InteropEHRate D2D Approach

A comparison study took place with specified criteria, for identifying the most ideal short-range wireless

communication technology as a basis to realize the communication aspects of the envisioned D2D protocol.

The short-range wireless communication technologies that have been considered include: Wi-Fi direct,

Bluetooth v4.0, BLE, and NFC. These criteria included all of our needs and necessities as described in D2.1

deliverable [D2.1], in order to be compliant with what the objectives of the D2D protocol, for the

interoperable exchange of healthcare data between a mobile application (i.e. S-EHR app) and an application

on the healthcare practitioner’s personal computer (i.e. HCP App).

In more detail, the comparison criteria were the following:

● Range (in centimeters/ meters)

● Data Rate (in bps)

● Security (Low, Medium, High based on the short-range wireless communication technology

specification)

● Platform Applicability (referring to the mostly used platform operating systems (iOS, Android))

● Ease of use (Low, Medium, High based on the short-range wireless communication technology

specification)

● Power Consumption (Low, Medium, High based on the short-range wireless communication

technology specification)

 Wi-Fi Direct Bluetooth v4.0 BLE NFC

Range Up to 180 m Up to 10m Up to 10m Up to 4cm

Data Rate Up to 250Mbps Up to 25 Mbps Up to 200kbps Up to 424kbps

Security High High High Medium

Platform

Applicability

Android: Host Wi-Fi

network by Android or

PC

iOS: Manually join

hosted network by the

PC

Android:

Applicable

iOS: Needs

certification under

MFI program

Android: Applicable

iOS: GATT-based API

Android:

Applicable

iOS: Applicable

(data transfer by

NFC packets to be

understood)

Ease of Use High High High High

Power

Consumption

High Medium Low Low

Table 1 - Comparison between short-range wireless communication technologies

In terms of process, a list of requirements was circulated to the hospitals of the InteropEHRate consortium

(i.e. users), in order to identify their needs and specifications. This list (including the users’ answers) can be

seen in the ANNEX. Based on the results that are displayed in Table 1, as well as the needs and the criteria

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 13

that were set by the users, the two most likely candidate short-range wireless communication technologies

for the D2D protocol were Bluetooth v4.0, and BLE. In general, one of the primary advantages of Bluetooth

is that it is enabled in almost any Android or Apple iOS device, allowing these devices to transmit data

wirelessly. This advantage can be translated to more specific benefits including wirelessly connecting or

“pairing” devices to create a wireless personal area network or WPAN, wireless synchronization, as well as

conveniently sending and/or receiving files without the trouble of carrying and using cables or other

hardware interfacing technology such as the USB standard or Thunderbolt technology. That is why

complementary devices have been developed and marketed because Bluetooth has seemingly become a

standard feature of modern computers, specifically laptops and mobile devices. These devices included

wireless speakers and headphones, smart devices such as smartwatches and other wearable technologies

for monitoring activities, and Bluetooth-enabled smart home appliances and office equipment, among

others. Moreover, pairing devices with built-in Bluetooth radio is considerably easy. There is no need to

install additional software or driver to establish communication between Bluetooth-enabled devices. There

is also no rigorous setup process for two devices to communicate. The technology simplifies the entire

pairing process by making enabled devices readily discoverable to one another as long as that their

Bluetooth radios are turned on, and they are within the coverage radius. In addition, the technology also

includes a protocol for identifying services using the Service Discovery Protocol and Universal Unique

Identifier to list down specific services or features of a particular device. These protocols allow another

device to readily determine and display the name and class of a device it intends to pair with, as well as its

services or features and technical information. Furthermore, Bluetooth technology is relatively energy

efficient, thus promoting further the benefits and convenience that come with wireless data transmission.

This is particularly true for the BLE or BLE standard. The ultra-low power requirement of BLE makes it ideal

for small devices, including wearable technologies, in which minimal battery life requirement and small

form factor are critical design and engineering considerations.

However, since both Bluetooth v4.0 and BLE were still two different candidates, this research was

continued for identifying the most efficient solution for the InteropEHRate project. It was identified that

BLE could be considered ideal for devices that must operate for long periods of time on small energy

sources. In general, devices that utilize BLE today range in intelligence from heart rate monitors to smart

watches, where BLE is particularly well suited for receiving small data updates, such as the current heart

rate, every few seconds. In that case, the “pairing” process is also very simple since BLE devices can

advertise themselves (at Peripheral state) and multiple BLE devices can be connected to another device (at

Central state), such as a smartphone. However, BLE cannot be considered as the answer for every IoT

device or scenario, especially in the case that our goal is to transmit moderately sized files (including texts

of a few kilobytes, or images of a few megabytes (Mbytes)). As it can be seen in Table 2, the users

demanded from the D2D protocol to exchange - among others, image files of a few megabytes, for the

identified types of examinations.

Type of Examination Weight evaluation by category (Mbytes)

Radiology 30

Ultrasound 10

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 14

Mammography 100

TC 300

RM 200

Angiographies 150

Positron Emission

Tomography – PET

30

Other Nuclear Medicine

examinations

30

Radiotherapy 30

Other 38

Reports 0.1

Table 2 - Size of files that will be exchanged through the D2D protocol

In more detail, with Bluetooth v4.0, throughput is as high as 25 Mbps, so once two devices are paired,

sending 100 Mbytes of data would take a very small amount of time to be transmitted. In order to develop

applications requiring Bluetooth access in Apple iOS devices, this can be cost-prohibitive, as Apple collects

licensing and other fees in exchange for this functionality. It should be noted that this is not an issue on

Android, but what was needed was the used devices to be compatible with both major mobile operating

systems. In that scenario, BLE could be considered as the most convenient solution, since Apple iOS devices

support BLE out of the box, without the need to enroll into the MFI program, and many Android devices are

being manufactured with BLE as well. In the case of BLE, in order to send large data files, one needs to

break apart the payload into 20-byte chunks, where on the receiving end, these chunks are recombined.

Four such chunks can be sent per connection interval, which can vary from one device to the next. Android

devices support intervals as low as 7.5 ms, while Apple iOS devices support connection intervals in the 30

ms range. At this rate, with BLE a 500KB image file would take over three minutes to transfer. Some

workarounds for reducing this amount of data transfer time could be the usage of data partitioning,

serialization, and compression which could help in reducing payload sizes, but in the case of InteropEHRate,

this could not satisfy the users’ needs and requirements who demand low transfer times and high data

transfer rates. Consequently, due to its specifications, Bluetooth v4.0 has been identified as the most

convenient and suitable candidate for short-range wireless communication data exchange, for being

implemented in the D2D protocol in the InteropEHRate project.

2.3. D2D Protocol Description
The D2D protocol will define the bluetooth operations represented by the interfaces that will be offered by

the mobile application and the healthcare’s organization application speaking of the S-EHR app and the HCP

app accordingly. These interfaces will be included in both applications accordingly, and will be used by the

two main actors of the D2D protocol, the citizens and the HCPs. These two actors will be the only involved

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 15

ones in the overall interaction, for exchanging the consent of accessing each one's personal data, the

healthcare related data, and the evaluation data accordingly.

In order for the D2D protocol to realize the communication and interaction with the two parties, two

different interfaces will be designed and realized. The first interface (MD2DI) will be responsible for offering

the bluetooth operations and services by the S-EHR app for interconnecting, exporting messages and

receiving requests from the HCP app, while the second interface (TD2DI) will be responsible for offering the

bluetooth operations and services by the HCP app for similar types of tasks from the S-EHR app. As

discussed in Section 2.2, the overall communication will be based on the Bluetooth short-range wireless

communication technology, hence the initial step of the overall D2D protocol will be the two involved

actors to pair and bond their devices, prior to exchanging any messages. Figure 2 displays the overall

connection between a citizen and an HCP, including the aforementioned interfaces, as well as the involved

applications.

Figure 2 - D2D protocol interfaces

The rest of this section provides technical specifications (using UML language) of the D2D protocol. The

section is structured in two sub-sections, each one focused on a specific topic:

● Conceptual D2D: This includes the conceptual description of the D2D protocol, defining the basic

operations that this protocol should contain.

● Involved Applications: This includes a short description of the involved applications (S-EHR app and

the HCP app), referring to the purpose and to a high-level description of their architecture.

● D2D Interface Interactions: This includes the overall interactions between the involved interfaces

for both the S-EHR app and the HCP app through a Sequence Diagram.

● D2D over Bluetooth: This includes the concrete description of the D2D protocol, regarding the

Bluetooth profiles used for the connection and pairing process of the involved applications, and the

messages that are exchanged according to the applications’ interactions.

2.3.1. Conceptual D2D

The Conceptual D2D defines the basic operations that the protocol should contain, for the exchange of data

between the HCP and the citizen through the HCP app and the S-EHR app accordingly. The following figures

show two UML class diagrams representing the main interfaces of D2D, named MD2DI and TD2DI, from the

side of the S-EHR App and the side of the HCP Web App.

MD2DI

MD2DI and MD2DI-Security is the name of the interface that is offered by the S-EHR app regarding the D2D

protocol, containing the operations for letting the HCP app to perform tasks related to the S-EHR app, by

invoking these operations.

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 16

Figure 3 - MD2D interface operations

The following tables provide a complete description of all the operations of the MD2DI.

Operation getConnectionRequest

Name getConnectionRequest

Description This operation is invoked by the HCP app for getting the advertised connection

request from the S-EHR app for performing the pairing process between them,

and getting a random connection number that will be used for pairing the two

applications.

Arguments ● BTadapterAddress: a string that contains the MAC address of the

Bluetooth adapter that is used from the side of the HCP

Return Value This operation will return a number (randomConnectionNumber) in the form of

an integer, that will be used for pairing the two applications.

Exceptions ● Security exceptions related to the Bluetooth connection.

● Network exceptions related to Bluetooth connection failure.

Preconditions ● The Bluetooth connection exists in the mobile phone that includes the S-

EHR app.

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 17

Operation getConnectionDetails

Name getConnectionDetails

Description This operation is invoked by the HCP app for getting the connection unique

session identifier, in the form of a random String. This String will be used by

both sides (S-EHR app and HCP app), for current connection identification

purposes.

Arguments ● randomConnectionNumber: the random number that will be provided

to the S-EHR app and has to be approved from both sides of the S-EHR

app and the HCP app for the pairing instantiation.

Return Value This operation will return a unique session identifier (sessionConnectionID), in

the form of a random String that will be used by both sides (S-EHR app and HCP

app), for current connection identification purposes.

Exceptions ● Security exceptions related to the Bluetooth connection.

● Network exceptions related to Bluetooth connection failure.

Preconditions ● The Bluetooth connection exists in the mobile phone that includes the

S-EHR app.

Operation getHealthOrganizationDecision

Name getHealthOrganizationDecision

Description This operation is invoked by the HCP app for getting the decision from the side

of the S-EHR app, regarding whether the provided Health Organization identity

is approved or not

Arguments ● sessionConnectionID: a string that identifies the connection between

the two involved applications.

Return Value This operation will return, one of the two following options:

● A connection closure message (connectionClosureMessage) in the form

of a String, indicating that the Health Organization identity was not

approved, hence the connection will be closed.

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 18

● The personal data of the S-EHR app owner (i.e. name, surname, date of

birth, location of birth, gender, country of residence, and social security

number) in the form of an object (PersonalData).

Exceptions ● Security exceptions related to the Bluetooth connection.

● Network exceptions related to Bluetooth connection failure.

Preconditions ● The Bluetooth connection exists in the mobile phone that includes the

S-EHR app.

● The smartphone is enabled with Bluetooth v4.0 and above

● The session is still valid.

Operation getConsentDecision

Name getConsentDecision

Description This operation is invoked by the HCP app for getting the decision from the side

of the S-EHR app, regarding whether the consent for getting the S-EHR app

owner’s data has been approved or not.

Arguments ● sessionConnectionID: a string that identifies the connection between

the two involved applications.

Return Value This operation will return, one of the two following options:

● A connection closure message (connectionClosureMessage) in the form

of a String, indicating that the Health Organization identity was not

approved, hence the connection will be closed.

● The already preconfigured dataset of the S-EHR application owner (i.e.

data that has been approved for sharing) in the form of an object

(PreconfiguredDataset).

Exceptions ● Security exceptions related to the Bluetooth connection.

● Network exceptions related to Bluetooth connection failure.

Preconditions ● The Bluetooth connection exists in the mobile phone that includes the

S-EHR app.

● The smartphone is enabled with Bluetooth v4.0 and above

● The session is still valid.

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 19

Operation getConnectionClosureMessage

Name getConnectionClosureMessage

Description This operation is invoked by the HCP app for getting the final message of

connection closure, after the overall interaction has successfully ended with the

provision of the evaluation data.

Arguments ● sessionConnectionID: a string that identifies the connection between

the two involved applications.

Return Value This operation will return a connection closure message

(connectionClosureMessage) in the form of a String, indicating that the overall

interaction has successfully completed.

Exceptions ● Security exceptions related to the Bluetooth connection.

● Network exceptions related to Bluetooth connection failure.

Preconditions ● The citizen has already opened through her smartphone the Bluetooth

connection.

● The smartphone is enabled with Bluetooth v4.0 and above

● The session is still valid.

TD2DI

TD2DI and TD2DI-Security is the name of the interface that is offered by the HCP app regarding the D2D

protocol, containing the operations for facilitating the S-EHR app to perform tasks related to the HCP app,

by invoking these operations, as defined in the InteropEHRate architecture.

Figure 4 - TD2D interface operations

The following tables provide a complete description of all the operations of the TD2DI.

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 20

 Operation getConnectionDetails

Name getConnectionDetails

Description This operation is invoked by the S-EHR app for getting the connection unique

session identifier, in the form of a random String. This String will be used by

both sides (S-EHR app and HCP app), for current connection identification

purposes.

Arguments ● randomConnectionNumber: the random number that will be provided

to the S-EHR app and has to be approved from both sides of the S-EHR

app and the HCP app for the pairing instantiation.

Return Value This operation will return a unique session identifier (sessionConnectionID), in

the form of a random String that will be used by both sides (S-EHR app and HCP

app), for current connection identification purposes.

Exceptions ● Security exceptions related to the Bluetooth connection.

● Network exceptions related to Bluetooth connection failure.

Preconditions ● The HCP app is enabled with Bluetooth v4.0 and above

Operation getHealthOrganizationIdentity

Name getHealthOrganizationIdentity

Description This operation is invoked by the S-EHR app for getting the Healthcare

Organization personal identity, for identifying whether the identity is valid or

not.

Arguments ● sessionConnectionID: a string that identifies the connection between

the two involved applications.

Return Value This operation will return the Health Organization identity in the form of an

object (HealthOrganizationIdentity) containing specific details that identify the

Organization.

Exceptions ● Security exceptions related to the Bluetooth connection.

● Network exceptions related to Bluetooth connection failure.

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 21

Preconditions ● The HCP app is enabled with Bluetooth v4.0 and above

● The session is still valid.

Operation getPersonalIdentityDecision

Name getPersonalIdentityDecision

Description This operation is invoked by the S-EHR app for getting the decision from the side

of the HCP app, regarding whether the provided Personal identity is approved

or not

Arguments ● sessionConnectionID: a string that identifies the connection between

the two involved applications.

Return Value This operation will return, one of the two following options:

● A connection closure message (connectionClosureMessage) in the form

of a String, indicating that the Personal identity was not approved,

hence the connection will be closed.

● The temporary consent request of the HCP app owner in the form of an

object (TemporaryConsent), requesting access to specific types of data

stored in the S-EHR app.

Exceptions ● Security exceptions related to the Bluetooth connection.

● Network exceptions related to Bluetooth connection failure.

Preconditions ● The HCP app is enabled with Bluetooth v4.0 and above

● The session is still valid.

Operation getEvaluationData

Name getEvaluationData

Description This operation is invoked by the S-EHR app for getting the evaluation data from

the side of the HCP app (after the examination), in order to be stored to the S-

EHR app.

Arguments ● sessionConnectionID: a string that identifies the connection between

the two involved applications.

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 22

Return Value This operation will return the evaluation data of the examination to the S-EHR

app, in the form of an object (EvaluationData), containing the results of the

evaluation in various formats (e.g. textual data, images).

Exceptions ● Security exceptions related to the Bluetooth connection.

● Network exceptions related to Bluetooth connection failure.

● Access exceptions related to the ownership of data (only evaluation

data of the current S-EHR app owner can be provided).

Preconditions ● The HCP app is enabled with Bluetooth v4.0 and above

● The session is still valid.

2.3.2. Involved Applications (A7, SIVECO)

This section describes and lists the involved applications from the side of the S-EHR app and the HCP app.

2.3.2.1. S-EHR Application

A S-EHR app is any application installed on a personal mobile device, that is able to store the personal

health data of a user in a secure (encrypted) way according to the constraints specified by [D3.1] and that

supports the InteropeEHRate protocols defined in the current deliverable and in [D4.8]. Different vendors

may develop different S-EHRs apps. A S-EHR app contains health data of the user, produced and signed (for

traceability and trustability) by the healthcare organization that produces them, but can also contain data

directly stored and produced by citizens or by sensors. The provenance and author of each health data is

unambiguously persisted on the S-EHR and the principles of integrity and non repudiation are guaranteed.

More details on what is supported by a S-EHR app can be found in [D2.4].

2.3.2.2. HCP Application (SIVECO)

HCP App is a software application designed to provide medical staff with the ability to access and operate

patients’ data from S-EHR Mobile App, S-EHR Cloud and EHR of the Healthcare Organization. In other

words, the HCP App is an application used by the HCPs to securely exchange health data of their EHRs with

any S-EHR Mobile App and to read health data stored in S-EHR Cloud using the InteropEHRate protocols.

More details on what is supported by an HCP app can be found in [D2.4].

2.3.3. D2D Interface Interactions

The interactions between the interfaces of the MD2D and the TD2D are explained and visualized through

the Sequence Diagram of Figure 5.

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 23

Figure 5 - D2D protocol interactions

Following, a detailed description of the sequence diagram takes place. It is assumed that the pairing and

connection process has been already performed (as described in Section 2.3.4):

● Step 1 - getConnectionRequest: This operation is invoked by the HCP app for getting the advertised

connection request from the S-EHR app for performing the pairing process between them, and

getting a random connection number that will be used for pairing the two applications.

● Step 2 - getConnectionDetails: The S-EHR app invokes this operation for getting the connection’s

unique session identifier, in the form of a random String. This String will be used by both sides (S-

EHR app and HCP app), for the current’s connection identification purposes.

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 24

● Step 3 - getConnectionDetails: The HCP app invokes this operation for getting the connection’s

unique session identifier, in the form of a random String (for acknowledgment reasons). This String

will be used by both sides (S-EHR app and HCP app), for the current’s connection identification

purposes.

● Step 4 - getHealthOrganizationIdentity: The next step is for the S-EHR app to invoke this operation

for getting the Healthcare Organization personal identity, for identifying whether the identity is

valid or not.

● Step 5-6 - getHealthOrganizationDecision: As soon as the decision has been made about the

Healthcare Organization identity, this operation is invoked by the HCP app for getting the decision

from the side of the S-EHR app, regarding whether the provided Health Organization identity is

approved or not. This operation will return, one of the two following options:

- A connection closure message (connectionClosureMessage) in the form of a String,

indicating that the Health Organization identity was not approved, hence the connection

will be closed.

- The personal data of the S-EHR app owner (i.e. name, surname, date of birth, location of

birth, gender, country of residence, and social security number) in the form of an object

(PersonalData).

● Step 7-8 - getPersonalIdentityDecision: In the case that the Healthcare Organization identity has

been approved, this operation is invoked by the S-EHR app for getting the decision from the side of

the HCP app, regarding whether the provided Personal identity is approved or not. As in the

previous cases, this operation will return, one of the two following options:

- A connection closure message (connectionClosureMessage) in the form of a String,

indicating that the Personal identity was not approved, hence the connection will be

closed.

- The temporary consent request of the HCP app owner in the form of an object

(TemporaryConsent), requesting access to specific types of data stored in the S-EHR app.

● Step 9-10 - getConsentDecision: In the case that the temporary consent has been requested, this

operation is invoked by the HCP app for getting the decision from the side of the S-EHR app,

regarding whether the consent for getting the S-EHR app owner’s data has been approved or not.

As in the previous cases, this operation will return, one of the two following options:

- A connection closure message (connectionClosureMessage) in the form of a String,

indicating that the Health Organization identity was not approved, hence the connection

will be closed.

- The already preconfigured dataset of the S-EHR application owner (i.e. data that has been

approved for sharing) in the form of an object (PreconfiguredDataset).

● Step 11 - getEvaluationData: In the case that the preconfigured dataset has been provided, the S-

EHR app invokes this method for getting the evaluation data from the side of the HCP app (after the

examination), in order to be stored to the S-EHR app.

● Step 12 - getConnectionClosureMessage: The last steps includes this operation that has to be

invoked by the HCP app for getting the final message of connection closure, after the overall

interaction has successfully ended with the provision of the evaluation data.

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 25

2.3.4. D2D over Bluetooth

In order for the Bluetooth pairing and connection between the devices that host the S-EHR app and the

HCP app to be realized, there must be followed a specific process between the client and the server

application. In our case, both the S-EHR app and the HCP app will behave as a true peer-to-peer endpoint

by exposing both server and client behavior. Typically, the pairing process that is being followed is based on

the following figure (Figure 6).

Figure 6 - Bluetooth pairing process

In general, in order for Bluetooth-enabled devices to transmit data between each other, they must first

form a channel of communication using a pairing process. One device, a discoverable device, makes itself

available for incoming connection requests. Another device finds the discoverable device using a service

discovery process. After the discoverable device accepts the pairing request, the two devices complete a

bonding process where they exchange security keys. The devices cache these keys for later use. After the

pairing and bonding processes are complete, the two devices exchange information. When the session is

complete, the device that initiated the pairing request releases the channel that had linked it to the

discoverable device. The two devices remain bonded, however, so they can reconnect automatically during

a future session as long as they're in range of each other and neither device has removed the bond.

This process can be summarized as follows:

1. Initialization: All bluetooth enabled applications must first initialize the Bluetooth stack.

2. Client: A client consumes the remote services. This is done by first discovering any nearby devices,

and afterwards for each discovered device it searches for services of interest.

3. Server: A server makes the services available to clients. It registers them in the SDDB [SDDB], in

effect advertising them. It then waits for incoming connections, accepts them as they come in, and

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 26

serves the clients that make them. Finally, when the service is no longer needed, the application

removes it from the SDDB.

In general, in order to use Bluetooth, a device must be compatible with the subset of Bluetooth profiles,

meaning a set of rules, which are necessary to use the desired services defined by these rules. A Bluetooth

profile is a specification regarding an aspect of Bluetooth-based wireless communication between devices

that resides on top of the Bluetooth Core Specification and (optionally) additional protocols [BCS]. The way

a device uses Bluetooth depends on its profile capabilities. The profiles provide standards which

manufacturers follow to allow devices to use Bluetooth in the intended manner.

Since the D2D protocol will be based on the Bluetooth v4.0, a research was performed to the different

Bluetooth profiles that are supported by the Bluetooth Core Specification version 4.0 [BSCv4.0], where it

was identified that the Bluetooth [SPP] was the most suitable Bluetooth profile to be used for the purposes

of the D2D protocol. Shortly, the Bluetooth SPP profile defines the requirements for Bluetooth devices that

are necessary for setting up emulated serial cable connections using the RFCOMM protocol [RFCOMM]

between the two peer devices. The requirements are expressed in terms of services provided to

applications, and by defining the features and procedures that are required for interoperability between

Bluetooth devices.

In the Bluetooth SPP profile, the following roles are defined:

● Device A (DevA) takes initiative to form a connection to another device (Initiator).

● Device B (DevB) waits for another device to take initiative to connect (Acceptor).

Figure 7 shows the protocols and entities used in the Bluetooth SPP profile in the case of the S-EHR and the

HCP app, where the S-EHR app is considered as the Initiator while the HCP app is considered as the

Acceptor. These roles can change between the two involved applications. Shortly, the Baseband

[Baseband], LMP [LMP] and L2CAP [L2CAP] are the OSI layer [OSI] of the Bluetooth protocols. RFCOMM is

the Bluetooth adaptation of GSM TS 07.10 [GSM], providing a transport protocol for serial port emulation,

while SDP [SDP] is the Bluetooth Service Discovery Protocol.

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 27

Figure 7 - Protocols and entities of the Bluetooth SPP profile

The required procedures that should be defined in the Bluetooth SPP profile are divided in three different

steps, referring to the (i) establishment of a link and the set up of a Virtual Serial Connection, (ii) the

acceptance of the link and the establishment of a Virtual Serial Connection, and (iii) the registration of the

Service Record in a local SDP database.

(i) Establish Link and Set up Virtual Serial Connection

These steps are defined below:

1. Submit a query using SDP to find out the RFCOMM Server channel number of the desired

application in the remote device.

2. Optionally, require authentication of the remote device to be performed. Also optionally, require

encryption to be turned on.

3. Request a new L2CAP channel to the remote RFCOMM entity.

4. Initiate an RFCOMM session on the L2CAP channel.

5. Start a new data link connection on the RFCOMM session, using the aforementioned server channel

number. After step 5, the virtual serial cable connection is ready to be used for communication

between applications on both sides.

In the case that there already exists an RFCOMM session between the devices when setting up a new data

link connection, the new connection must be established on the existing RFCOMM session. (This is

equivalent to skipping over steps 3 and 4 above.)

(ii) Accept Link and Establish Virtual Serial Connection

These steps are defined below:

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 28

1. If requested by the remote device, take part in authentication procedure and, upon further

request, turn on encryption.

2. Accept a new channel establishment indication from L2CAP.

3. Accept an RFCOMM session establishment on that channel.

4. Accept a new data link connection on the RFCOMM session. This may trigger a local request to

authenticate the remote device and turn on encryption, if the user has required that for the

emulated serial port being connected to (and authentication/encryption procedures have not

already been carried out).

(iii) Register Service Record in Local SDP Database

This procedure refers to registration of a service record for an emulated serial port (or equivalent) in the

SDP database. This implies the existence of a Service Database, and the ability to respond to SDP queries.

All services/applications reachable through RFCOMM need to provide an SDP service record that includes

the parameters necessary to reach the corresponding service/application.

2.3.4.1. D2D over Android Bluetooth API

In the 1st version of the D2D protocol specification, we are exploiting the Bluetooth SPP profile, while the

specification is based on the Android Bluetooth API [ANDROIDBT] since the D2D protocol is currently in a

very immature phase, and we would like to perform additional research on the different platforms for

identifying the Bluetooth profile that can satisfy all the requirements as specified in D2.1 [D2.1]. In the next

version of the D2D protocol specification that will be released in March 2020, the D2D protocol

specification will be independent from any API in order for any developer that would like to use this

protocol to be able to use the listed operations or develop her own operations, so as to implement the

corresponding data exchange between a S-EHR and an HCP application.

As a result, based on what has been described in the Bluetooth SPP profile and the Android Bluetooth API

that is based upon this profile, the following steps are followed for enabling the connection and the

exchange of data between the involved applications. These steps are classified in five different categories:

(a) find devices, (b) query paired devices, (c) discover devices, (d) connect devices (either as a server or as a

client), and (e) manage connection.

(a) Find devices

In D2D, the BluetoothAdapter is being used for finding remote Bluetooth devices either through device

discovery or by querying the list of paired devices. In general, device discovery is considered as the

scanning procedure that searches the local area for Bluetooth-enabled devices and requests some

information about each one. This process is sometimes referred to as discovering, inquiring, or scanning.

However, a nearby Bluetooth device responds to a discovery request only if it is currently accepting

information requests by being discoverable. If a device is discoverable, it responds to the discovery request

by sharing some information, such as the device's name, its class, and its unique MAC address. Using this

information, the device that is performing the discovery process can then choose to initiate a connection to

the discovered device. Once a connection is made with a remote device for the first time, a pairing request

is automatically presented to the user. When a device is paired, the basic information about that device -

such as the device's name, class, and MAC address - is saved and can be read using the Bluetooth APIs.

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 29

Using the known MAC address for a remote device, a connection can be initiated with it at any time

without performing discovery, assuming the device is still within range.

● In order for the devices to be paired, the two devices have to be aware of each other's existence,

have a shared link-key that can be used for authentication, and are capable of establishing an

encrypted connection with each other.

● In order for the devices to be connected, the two devices have to share an RFCOMM channel and

to transmit data with each other, meaning that they have to be already paired with each other.

Pairing is automatically performed when it is initiated an encrypted connection with the Bluetooth

APIs.

(b) Query paired devices

Before performing device discovery, a query is performed to the set of paired devices to see if the desired

device is already known. This is done through calling getBondedDevices(). This returns a set of

BluetoothDevice objects representing paired devices.

(c) Discover devices

To start discovering devices, startDiscovery() is called. The process is asynchronous and returns a boolean

value indicating whether discovery has successfully started. The discovery process usually involves an

inquiry scan of about 12 seconds, followed by a page scan of each device found to retrieve its Bluetooth

name. In order to receive information about each device discovered, the involved applications must

register a BroadcastReceiver for the ACTION_FOUND intent. The system broadcasts this intent for each

device. The intent contains the extra fields EXTRA_DEVICE and EXTRA_CLASS, which in turn contain a

BluetoothDevice and a BluetoothClass, respectively.

(d) Connect devices

In order to create a connection between the involved applications, both the server-side and client-side

mechanisms have to be implemented, because one device must open a server socket, and the other one

must initiate the connection using the server device's MAC address. The server device and the client device

each obtain the required BluetoothSocket in different ways. The server receives socket information when

an incoming connection is accepted. The client provides socket information when it opens an RFCOMM

channel to the server. The server and client are considered connected to each other when they each have a

connected BluetoothSocket on the same RFCOMM channel. At this point, each device can obtain input and

output streams, and data transfer can then begin.

● Connect as a Server

The server should hold an open BluetoothServerSocket. The purpose of the server socket is to

listen for incoming connection requests and provide a connected BluetoothSocket after a request is

accepted. When the BluetoothSocket is acquired from the BluetoothServerSocket, the

BluetoothServerSocket can be discarded. In order to set up a server socket and accept a

connection, the following sequence of steps are followed:

- Get a BluetoothServerSocket by calling listenUsingRfcommWithServiceRecord().

The string is an identifiable name of the service, which the system automatically writes to a new

SDP database entry on the device. The name is arbitrary and can simply be the application’s name.

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 30

The UUID is also included in the SDP entry and forms the basis for the connection agreement with

the client device. That is, when the client attempts to connect with this device, it carries a UUID

that uniquely identifies the service with which it wants to connect. These UUIDs must match in

order for the connection to be accepted.

- Start listening for connection requests by calling accept().

This is a blocking call that returns when either a connection has been accepted or an exception has

occurred. A connection is accepted only when a remote device has sent a connection request

containing a UUID that matches the one registered with this listening server socket. When

successful, accept() returns a connected BluetoothSocket.

- Close connections by calling close().

This operation releases the server socket and all its resources, but doesn't close the connected

BluetoothSocket that has been returned by accept(). RFCOMM allows only one connected client

per channel at a time, so in most cases, it makes sense to call close() on the BluetoothServerSocket

immediately after accepting a connected socket.

● Connect as a Client

In order to initiate a connection with the application that is accepting connections on an open

server socket, it must first be obtained a BluetoothDevice object that represents the remote device.

The basic procedure is as follows:

- Using the BluetoothDevice, get a BluetoothSocket by calling

createRfcommSocketToServiceRecord(UUID).

This operation initializes a BluetoothSocket object that allows the client to connect to a

BluetoothDevice. The UUID passed here must match the UUID used by the server device when it

called listenUsingRfcommWithServiceRecord(String, UUID) to open its BluetoothServerSocket.

- Initiate the connection by calling connect().

This is a blocking call, where after the client calls this method, the system performs an SDP lookup

to find the remote device with the matching UUID. If the lookup is successful and the remote

device accepts the connection, it shares the RFCOMM channel to use during the connection, and

the connect() method returns. If the connection fails, or if the connect() method times out (after

about 12 seconds), then the method throws an IOException.

(e) Manage a connection

After the applications have successfully connected, each one has a connected BluetoothSocket. Using the

BluetoothSocket, the general procedure to transfer data is as follows:

- Get the InputStream and OutputStream that handle transmissions through the socket using

getInputStream() and getOutputStream(), respectively.

- Read and write data to the streams using read(byte[]) and write(byte[]).

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 31

It should be mentioned that it is used a dedicated thread for reading from the stream and writing

to it. This is important because both the read(byte[]) and write(byte[]) methods are blocking calls.

The read(byte[]) method blocks until there is something to read from the stream. The write(byte[])

method does not usually block, but it can block for flow control if the remote device is not calling

read(byte[]) quickly enough and the intermediate buffers become full as a result. As a result, the

main loop in the thread is dedicated to reading from the InputStream. A separate public method in

the thread can be used to initiate writes to the OutputStream.

● After the constructor acquires the necessary streams, the thread waits for data to come

through the InputStream. When read(byte[]) returns with data from the stream, the data is

provided using a member Handler from the parent class. The thread then waits for more

bytes to be read from the InputStream.

● Sending outgoing data is performed through calling the thread's write() method and

passing in the bytes to be sent. This method calls write(byte[]) to send the data to the

remote device. If an IOException is thrown when calling write(byte[]), the thread notifies

that the device could not send the given bytes to the other (connected) device.

- The thread's cancel() method allows the connection to be terminated at any time by closing the

BluetoothSocket. This method should always be called when the Bluetooth connection has to be

finished.

Based on the D2D over Android Bluetooth API and the Conceptual D2D descriptions, the conceptual

operations that are invoked by the S-EHR app and the HCP app, can be mapped with the methods of the

Android Bluetooth API as follows:

For the operations of the MD2DI which are invoked by the HCP app,

● getConnectionRequest can be mapped with listenUsingRfcommWithServiceRecord() that is

responsible for getting a Bluetooth Server Socket, while also being replaced by the total of the

methods that are offered in the stages of finding devices, querying paired devices and discovering

devices, as described above.

● getConnectionDetails can be mapped with the methods offered by the stage of querying paired

devices, regarding the method of getBondedDevices() for getting the bonded devices, while it can

also be mapped with the connected devices stages, regarding the accept() and close() methods for

either accepting or closing the specific connection.

● getHealthOrganizationDecision can be mapped with the methods offered by the stage of managing

a specific connection, regarding the methods of getInputStream(), getOutputStream(),

read(byte[]) and write(byte[]), for reading or writing specific data accordingly.

● getConsentDecision can be mapped with the methods offered by the stage of managing a specific

connection, regarding the methods of getInputStream(), getOutputStream(), read(byte[]) and

write(byte[]), for reading or writing specific data accordingly.

● getConnectionClosureMessage can be mapped with the methods offered by the stage of managing

a specific connection, regarding the methods of getInputStream(), getOutputStream(),

read(byte[]) and write(byte[]), for reading or writing specific data accordingly.

The operations of the TD2DI which are invoked by the S-EHR app,

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 32

● getConnectionDetails can be mapped with the methods offered by the stage of querying paired

devices, regarding the method of getBondedDevices() for getting the bonded devices, while it can

also be mapped with the connected devices stages, regarding the accept() and close() methods for

either accepting or closing the specific connection.

● getHealthOrganizationIdentity can be mapped with the methods offered by the stage of managing

a specific connection, regarding the methods of getInputStream(), getOutputStream(),

read(byte[]) and write(byte[]), for reading or writing specific data accordingly.

● getPersonalIdentityDecision can be mapped with the methods offered by the stage of managing a

specific connection, regarding the methods of getInputStream(), getOutputStream(), read(byte[])

and write(byte[]), for reading or writing specific data accordingly.

● getEvaluationData can be mapped with the methods offered by the stage of managing a specific

connection, regarding the methods of getInputStream(), getOutputStream(), read(byte[]) and

write(byte[]), for reading or writing specific data accordingly.

2.3.4.2. D2D Commands & Replies Specification

As soon as the devices have been paired and the connection has been established, the messages that will

be exchanged within the context of the D2D between the involved applications, should follow the process

defined below, being also consistent to the provided rules, as described in the following tables. Figure 8

illustrates the commands and replies that will be exchanged in the case of the D2D protocol, between any

involved applications.

Figure 8 - D2D exchanged messages

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 33

A description of the steps of Figure 8 follows, accompanied with the rules that each command and reply

should follow. All these steps are part of the D2D protocol that are provided by operations which are

mapped with the methods offered by the stage of managing a specific connection in the Android Bluetooth

API, regarding the methods of getInputStream(), getOutputStream(), read(byte[]) and write(byte[]), for

reading or writing specific data accordingly.

1. S-EHR app: The S-EHR app will send to the HCP app a random connection number in the form of 6

numerical digits following the format of: [######]

randomConnectionNumber Rules

Name randomConnectionNumber

Description The random number that will be generated for establishing the Bluetooth

connection between the involved application in the D2D protocol.

Accepted Format This message should follow the format of an integer of length of 6 digits`

Example 990045

2. HCP app: The HCP app will send to the S-EHR app an acknowledgement message, followed by the

current’s session connection identifier, following the format of: [ACK SID####]

sessionConnectionID Rules

Name sessionConnectionID

Description The identifier of the current Bluetooth connection session between the involved

applications

Accepted Format This message should follow the format of “ACK SID” followed by any String of

length of 4 digits (alphanumerical)

Example ACK SID3564

3. S-EHR app: The S-EHR app will send to the HCP app an acknowledgment message for approving the

current’s session connection identifier, following the format of: [ACK SID####]

sessionConnectionIDAcceptance Rules

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 34

Name sessionConnectionIDAcceptance

Description The identifier of the current Bluetooth connection session between the involved

applications

Accepted Format This message should follow the format of “ACK SID” followed by any String of

length of 4 digits (alphanumerical)

Example ACK SID3564

4. HCP app: The HCP app will send to the S-EHR app an acknowledgement message, followed by the

object identifying the Health Organization identity, including information about the current coded

name, name, address and phone number, following the format of: [ACK HO_ID[Object{C_Code,

N_Name, A_Address, P_Phone}]

HealthOrganizationIdentity Rules

Name HealthOrganizationIdentity

Description The acknowledgment message and the that corresponds to the Healthcare

Organization identity.

Accepted Format This message should follow the format of “ACK HO_ID” followed by an object

within brackets that specifies the code, the name, the address and the phone

number of the Healthcare Organization. These 4 values can be of the types

defined below, where each one of them should have the following initials prior

to their description, separated by commas.

● The Code should start with C_<CODE>: String

● The Name should start with N_<NAME>: String

● The Address should start with A_<ADDRESS>: String

● The Phone should start with P_<PHONE>: String

Example ACK HO_ID[C_FTGM, N_Fondazione Toscana "Gabriele Monasterio”, A_Via

Giuseppe Moruzzi, 1, 56124 Pisa PI, Italy, P_+39 050 315 3229]

5. S-EHR app: The S-EHR app will send to the HCP app an acknowledgement message, followed by the

object identifying the Personal Identity of the S-EHR app owner, following the format of: [ACK

PER_ID[Object {N_Name, S_Surname, D_DateOfBirth, B_BirthLocation, G_Gender, C_Country,

SSN_SocialSecurityNumber}]. In the case that the Health Organization identity will not be approved,

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 35

the message that will be sent will be a one way message, informing about the connection closure,

following the format of: [NO CCM].

PersonalIdentity Rules

Name PersonalIdentity

Description The acknowledgment message and the that corresponds to the Personal

identity.

Accepted Format This message should follow the format of “ACK PER_ID” followed by an object

within brackets that specifies the name, surname, date of birth, birth location,

gender, country and social security number of the owner of the S-EHR app.

These 7 values can be of the types defined below, where each one of them

should have the following initials prior to their description, separated by

commas.

● The Name should start with N_<NAME>: String

● The Surname should start with S_<SURNAME>: String

● The Date of birth should start with D_<DATEOFBIRTH>: date (accepted

format dd/mm/yyyy)

● The Birth location should start with B_<BIRTHLOCATION>: String

● The Gender should start with G_<GENDER>: String (accepted format for

female, male or undefine are F OR M or U accordingly)

● The Country should start with C_<COUNTRY>: String

● The Social Security Number (SSN) should start with S_<SSN>: String

In the case that a connection closure message, this should follow the format of

“NO CMM” indicating the connection closure.

Example ACK PER_ID[N_Peter, S_Brown, D_19/12/1974, B_London, G_Male,

C_UnitedKingdom, SSN_35763BB]

6. HCP app: The HCP app will send to the S-EHR app an acknowledgement message, followed by the

object of the Temporary Consent towards the S-EHR app owner, following the format of: [ACK

CONSENT_REQ[Object {H_Header, I_Info, d_Date}]. In the case that the Consent Request will not be

approved, the message that will be sent will be a one way message, informing about the

connection closure, following the format of: [NO CCM].

TemporaryConsent Rules

Name TemporaryConsent

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 36

Description The acknowledgment message and the that corresponds to the Consent Request

Accepted Format This message should follow the format of “ACK CONSENT_REQ” followed by an

object within brackets, that specifies the header, information and the date of

the provided consent. These 3 values can be of the types defined below, where

each one of them should have the following initials prior to their description,

separated by commas.

● The Header should start with H_<HEADER>: String

● The Information should start with I_<INFORMATION>: String

● The date should start with d_<DATE>: date (accepted format

dd/mm/yyyy)

In the case that a connection closure message, this should follow the format of

“NO CMM” indicating the connection closure.

Example ACK CONSENT_REQ[H_AccessData, I_Request accessing personal data for

viewing the latest examination’s results, d_21/06/2019]

7. S-EHR app: The S-EHR app will send to the HCP app an acknowledgement message, followed by the

object identifying the preconfigured dataset to be provided by the S-EHR app owner, following the

format of: [ACK DATA[Object {D_Description, F_DataFile, d_Date}]. In the case that the Consent

Request will not be approved, the message that will be sent will be a one way message, informing

about the connection closure, following the format of: [NO CCM].

PreconfiguredDataset Rules

Name PreconfiguredDataset

Description The acknowledgment message and the that corresponds to the Preconfigured

Dataset

Accepted Format This message should follow the format of “ACK DATA” followed by an object

within brackets, that specifies the description, file and the date of the

preconfigured dataset. These 3 values can be of the types defined below, where

each one of them should have the following initials prior to their description,

separated by commas.

● The Description should start with D_<DESCRIPTION>: String

● The file should start with F_<DATAFILE>: File

● The date should start with d_<DATE>: date (accepted format

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 37

dd/mm/yyyy)

In the case that a connection closure message, this should follow the format of

“NO CMM” indicating the connection closure.

Example ACK DATA[D_Last Examination Results, F_ExamResults.csv, d_21/06/2019]

8. HCP app: The HCP app will send to the S-EHR app an acknowledgement message, followed by the

object of the Evaluation Data towards the S-EHR app owner, following the format of: [ACK

EVAL_DATA[Object {D_Description, F_DataFile, d_Date}].

EvaluationData Rules

Name EvaluationData

Description The acknowledgment message and the object that corresponds to the Evaluation

Data

Accepted Format This message should follow the format of “ACK EVAL_DATA” followed by an

object within brackets, that specifies the description, file and the date of the

evaluation data. These 3 values can be of the types defined below, where each

one of them should have the following initials prior to their description,

separated by commas.

● The Description should start with D_<DESCRIPTION>: String

● The file should start with F_<DATAFILE>: File

● The date should start with d_<DATE>: date (accepted format

dd/mm/yyyy)

Example ACK EVAL_DATA[D_Last Examination Evaluation Data, F_EvaluationResults.csv,

d_21/06/2019

9. S-EHR app: The S-EHR app will send to the HCP app a one way message, informing about the

successful connection closure (upon receiving the evaluation data), following the format of: [ACK

CCM].

successfulConnectionClosureMessage Rules

Name successfulConnectionClosureMessage

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 38

Description The message that informs about the success of the receival of the evaluation

data, and the connection closure between the involved applications

Accepted Format This message should follow the format of “ACK CMM” indicating the connection

closure.

Example ACK CCM

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 39

3. R2D PROTOCOL: REMOTE HEALTH DATA EXCHANGE
The R2D protocol, defines the set of operations and structure of data used for enabling (in a standard way)

the exchange of health data between a local or National EHR or a S-EHR Cloud and the S-EHR App with the

usage of the internet (in opposition to the D2D that is the protocol to exchange health data without the

usage of internet).

This chapter provides a detailed description of the context in which the R2D will be used, and of all the

conditions that have influenced the decisions taken in the process carried out to define the R2D

specifications.

3.1. R2D Protocol Scope
The most characteristic aspect of InteropEHRate project is the fact that an EHR resides on a citizen’s mobile

device. Citizen’s (health) data transfer is realized by using the two protocols described in this deliverable:

D2D for short range transmission, R2D for remote transmission over the internet.

According to the objectives defined by the InteropEHRate consortium for the first year of the project, the

first version of the R2D protocol focuses on acquiring medical data from a National EHR, in order to import

them in the citizen’s device.

Figure 9 - R2D protocol scope

In the InteropEHRate standard architecture (i.e. the European architecture for health data exchange

proposed by the project), data flows from an EHR system of Country A (the country of the citizen) to the

Health Organization Information System of an HCP operating in Country B, with the intermediation of the

citizen. Alla data transfers are performed over the two InteropEHRate’s protocols: R2D and D2D. The two

operations depicted in the above figure, do not happen at the same time: first of all the citizen has

imported (using R2D) his EHR from the National EHR system of his Country to his smartphone, only after

this operation has been executed, he would be able to transfer his EHR (using D2D) to an HCP in Country B.

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 40

However, importing health data in a standard way from EHRs of several European countries is a very

challenging subject. At the moment each Member State has its own EHR, based on proprietary APIs,

proprietary data model and proprietary data representation. These EHRs have been designed in order to

satisfy only requirements coming from stakeholders of the Member State itself and not to be interoperable

with each other. The architecture shown in the previous figure represents the evolution of the actual

situation, and the application of the idea behind the InteropEHRate.

Many steps have been performed by the EU in order to foster interoperability between European eHealth

systems, especially through the activities of the eHealth Network (established under Article 14 of Directive

2011/24/EU of the European Parliament and of the Council) and the CEF Programme.

3.2. Related Work
The most important project regarding cross border health data exchange financed by EU is eHDSI or

eHealth DSI, whose objectives are the initial deployment and operation of services for cross-border health

data exchange under the CEF. The architecture of eHDSI (Figure 10) is based on a closed and trusted

federation of NCP one for each Member State named eHDSI Circle of Trust; an NCP is a software

component representing a Member State’s EHR. An NCP provides a reduced-but-common API designed for

allowing EHRs of EU countries to interoperate in order to exchange health data.

Figure 10 - eHDSI system architecture

Figure 10 shows the eHDSI System Architecture [EHDSI SYS SPECS], stressing the role of the NCPs federation

as a common integration layer between the different EHRs of Member States. An NCP has the following

responsibilities:

● forwarding requests coming from its country to other NCPs;

● handling incoming requests coming from other NCPs;

● converting data from eHDSI data representation to owner country data representation.

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 41

Differently from InteropEHRate, in eHDSI a citizen’s EHR, despite the ownership of the citizen itself, resides

in the IT National Infrastructure. In this context, an HCP of Country A, in order to request health data of a

citizen of Country B (in that specific moment in Country A in front of the HCP), needs to access to National

Infrastructure of his country (Country A) and use the provided cross border health data exchange

functionalities to submit requests to Country B via NCP (requests are delegated to NCP of Country A, that

forwards them to NCP of Country B). Transactions in eHDSI always work following this schema, the HCP

interacts only with his National Infrastructure, and in the background the two involved national systems

exchange data using eHDSI as common integration layer (the citizen does not have an active role in eHDSI

transactions). According to [EUCBEHR REC] (EU Commission Recommendation of the sixth of February 2019

on a European Electronic Health Record exchange format), the baseline for the exchange contains the

following health data:

● Patient Summary;

● ePrescription / eDispensation;

● Laboratory results;

● Medical imaging and reports;

● Hospital discharge reports.

R2D and eHDSI share many objectives (mainly the exchange of health data in a standard way), however,

they show also some relevant differences:

● eHDSI is a system available only to HCOs and HCP, it has not been designed considering the citizen

as a primary actor. In eHDSI, a citizen cannot submit requests to his reference NCP (NCP of his

country), because NCPs are configured to receive requests only from other NCPs (closed and

trusted federation). Differently, in InteropEHRate the citizen is the actor at the centre of the

platform, he periodically downloads his data from the National EHR to his smartphone, and he

handles directly his data when in front of an HCP.

● eHDSI uses a standard representation of data (HL7/CDA), but it does not adopt any of the existing

eHealth standard API, like for instance the API proposed by OpenEHR project [OPENEHR].

Differently, R2D will be based upon a reduced version of FHIR, it will support FHIR API language and

FHIR data model and data representation.

This last point is very important both for the future of eHDSI and for a possible convergence between eHDSI

and R2D. Also the European Commission outlined this issue in [EUCBEHR ANNEX] (ANNEX to the

Commission Recommendation on a European Electronic Health Record exchange format): “The refinement

of the exchange format should consider the possibility offered by resource driven information models (such

as Health Level Seven Fast Healthcare Interoperability Resources (HL7 FHIR©)”.

The following figure shows how eHDSI and InteropEHRate could coexist, if eHDSI would adopt R2D / FHIR

and would allow a citizen to authenticate to the NCP of his Country:

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 42

Figure 11 - Common eHDSI domain

R2D protocol will be specified in two versions, one based on FHIR and the other one based on the current

eHDSI API specifications. R2D protocol will be specified first at a conceptual level and then translated into

two concrete specifications: i) one named R2D over FHIR, ii) the other one named R2D over eHDSI

(extended with the security protocol defined in [D3.3]). The following figure shows another possible way in

which eHDSI and InteropEHRate could coexist:

Figure 12 - Common eHDSI domain

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 43

3.3. R2D Protocol Description
This section provides technical specifications (using UML language) of the R2D protocol, but before going

into technical details, it is better to recall some general concepts behind R2D design. The main objective of

the current version of R2D is to define a standard protocol for importing data from an EHR. Beyond this

objective there are also secondary objectives that it is good to explain as they allow to understand the

reason behind some choices taken during the protocol design:

● be compliant to FHIR API and data model: FHIR is a well accepted standard supported by HL7 its

importance and adoption is increasing constantly. Also UE Commission in an official document

[EUCBEHR ANNEX] recommends the adoption of FHIR for cross border health data exchange.

● Simplify adoption by EHR providers: R2D will be implemented and deployed by EHR providers, so

one important issue to take into account is to simplify the adoption process to them. If R2D had

been defined only in FHIR it could have been an impediment to its adoption, especially for those

EHR providers that have already supported the effort for adopting NCP / eHDSI. Thus the decision

to define R2D also as an extension of eHDSI, defining a more limited version of the R2D (eHDSI API

do not offer the expression capabilities provided by the FHIR API) but easier to be adopted by EHR

providers already compliant to NCP / eHDSI.

In practical terms it means that R2D (as said in the previous chapter) will be defined in two versions

providing the same conceptual operations. In order to improve the comprehension of the operations

provided by the two versions, a conceptual version of the R2D will be first introduced. The following part of

this section is structured in three subsections, each focused on a specific topic:

● Conceptual R2D: conceptual descriptions of the R2D protocol. It defines the basic operations that a

protocol for the exchange of medical data should contain, without any explicit reference to a

concrete realization.

● R2D over FHIR: defines how the conceptual R2D protocol is realized as a set of operations

compliant to the FHIR API.

● R2D over eHDSI: defines how the conceptual R2D protocol is realized as a set of operations

compliant to the current eHDSI API.

3.3.1. Conceptual R2D

The Conceptual R2D defines the basic operations that a protocol for the exchange of medical data should

support. In accordance with the InteropEHRate objectives of Year 1, the protocol defines only operations

for reading medical data from a remote EHR source.

Although R2D is focused on exchange of medical data, it requires some security operations to authenticate

a citizen (see report [D3.1] for further details). These security operations are the only operations that does

not exchange medical data, and must be considered as preliminary operations invoked to enable a secure

exchange of medical data. Authenticating to the InteropEHRate platform, is the only way to gain access to

the core R2D functionalities for exchange of medical data. R2D has two main states:

● AUTHENTICATED: is the state that allows the use of the operations for the exchange of medical

data.

● NOT_AUTHENTICATED: is the state that does not allow the use of the operations for the exchange

of medical data, but allows only the use of the operations for the authentication of a citizen.

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 44

Once a citizen is authenticated and the protocol is in the AUTHENTICATED state, all the R2D operations for

the exchange of medical data can be used, without any restrictions and without the need of following

restrictions in the sequence of operations (indeed, a part of the security operations that changes the state

of the communication, the rest of the R2D protocol is just a restful a service).

The following figure shows an UML class diagrams representing the main interface of R2D named R2DI and

implemented by the HTTP service providing access to the underlying EHR:

Figure 13 - R2D interface operations

Before going into detailed description of R2DI interface, it is preferable to have an overview of the

reference (conceptual) data model on which the R2DI operations depends on (Figure 14).

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 45

Figure 14 - Conceptual data model

In the following table, a brief description of each class of the data model:

Name Description

HealthRecord It represents any health data that can be exchanged.

HealthRecordType Enumeration for the classification of some specific kind of health data. Values
of HealthRecordType have been defined in order to match baseline of EU in
Cross Border Health Data Exchange recommendations. Its values are:

● PATIENT_SUMMARY
● PRESCRIPTION
● DIAGNOSTIC_REPORT (including Laboratory Results and Medical

Imaging and Reports)
● DISCHARGE_REPORT

It will likely be extended in the future to support any health data that may
also be represented using the FHIR standard.

Patient It represents an individual receiving care or other health-related services.

HealthCareProfessional It represents an individual providing care or other health-related services to a
patient.

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 46

HealthCareOrganization It represents any organization offering health-related services.

Bundle It is a container for sets of instances of HealthRecord class.

ResponseFormat It represents the format required by the client S-EHR of health data to be
returned:

● STRUCTURED_CONVERTED: returned data are represented only in
the common format (FHIR based or CDA based depending if the FHIR
realization or the eHDSI realization is chosen) and using only
semantic codes prescribed by the InteropEHRate profile [D2.7]
(possibly obtained from the conversion of the codes(if any) in the
original source data or by means of a semi automatic information
extraction process). Semantic codes belonging to the InteropEHRate
profile will allow the client S-EHR to show the semantically annotated
content in the natural language of the user.

● STRUCTURED_UNCONVERTED: returned data are represented in FHIR
(without any specific restriction), using the same semantic codes (if
any) as the original source data (no conversion of semantic codes is
performed).

● UNSTRUCTURED: returned data are represented in a human readable
document format (e.g. PDF). No information extraction or conversion
of semantic code is performed. The exact content of the returned
document is not defined by the R2D protocol.

● ALL: data are returned both in the same format returned by
UNSTRUCTURED value and in the format STRUCTURED_CONVERTED
(if the server is able to convert), or STRUCTURED_UNCONVERTED (if
the server is not able to convert the semantic codes, but is able to
transform the content in FHIR format). If the server is not able to
perform any data transformations, only UNSTRUCTURED values are
returned.

The main requirement that drove the design of the R2DI interface is to support incremental download. It is

very likely that the first time the user will perform the import, a large amount of data will be transferred, so

the R2D protocol has been designed in order to well support such circumstances. All the R2D methods that

performs a search and whose results may be very large, will firstly return only a limited portion of this data

(page), providing information about the total size of the results and the number of pages needed to

download them all. The method nextPage() allows to access (incrementally) all the pages in which a search

result has been segmented, under the complete control of the client, that is able to interrupt fetching of

the results in whatever moment.

The following tables provide a complete description of all the operations of the R2DI.

Operation getAllRecords

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 47

Name getAllRecords

Description This method allows the client to retrieve all kinds of health data of a citizen

starting from a certain date.

Arguments ● Date fromDate: a date indicating the day after which the requested health

data must have been produced.

● String sessionId: a valid session token, representing the user who

successfully executed the login. This sessionId is obtained directly from the

platform after successful execution of login method.

● ResponseFormat responseFormat: one of the predefined ResponseFormat

enumeration values identifying the output format of the requested health

data.

Return Value An instance of Bundle containing the first page of the returned data (next pages

can be accessed using methods nextPage described below).

Exceptions ● Security exceptions related to the validation of the session.

● Network exceptions related to failure during remote communication.

Preconditions ● The citizen has successfully executed the authentication to the

InteropEHRate infrastructure.

● The session is still valid.

Operation getRecords

Name getRecords

Description This method allows the client to retrieve some kind of health data (of a citizen)

starting from a certain date. The kind of health data to be retrieved are passed

passed as argument.

Arguments ● HealthRecordType[] healtRecordTypes: an array of predefined values

containing the types of health data requested by the client.

● Date fromDate: a date indicating the day after which the requested health

data must have been produced.

● String sessionId: a valid session token, representing the user who

successfully executed the login. This sessionId is obtained directly from

the platform after successful execution of login method.

● ResponseFormat responseFormat: one of the predefined ResponseFormat

enumeration’s value identifying the output format of the requested

health data.

Return Value An instance of Bundle containing the first page of the returned data (next pages

can be accessed using methods nextPage described below).

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 48

Exceptions ● Security exceptions related to the validation of the session.

● Network exceptions related to failure during remote communication.

Preconditions ● The citizen has successfully executed the authentication to the

InteropEHRate infrastructure.

● The session is still valid.

Operation nextPage

Name nextPage

Description This method allows the client to obtain the next page of a bundle instantiated in a

previous search (methods getAllRecords() and / or getRecords()).

Arguments ● Bundle bundle: the bundle whose next page is requested.

● String sessionId: a valid session token, representing the user who

successfully executed the login. This sessionId is obtained directly from the

platform after successful execution of login method.

Return Value An instance of Bundle containing the next page (in reference to the bundle

provided as argument) of health data of the citizen. The next page is obtained

using the same search criteria used in the search method that originated the first

page of the bundle.

Exceptions ● Security exceptions related to the validation of the session.

● Network exceptions related to failure during remote communication.

Preconditions ● The citizen has successfully executed the authentication to the

InteropEHRate infrastructure.

● The session is still valid.

● The provided bundle is valid and has a next page

Operation getLastResource

Name getLastRecord

Description This method allows the client to obtain the most recent instance of a certain type of health

data (of a citizen) provided by the client itself as an argument.

Arguments ● HealthRecordType healtRecordType: an instance of one of the predefined values

of HealthRecordType indicating the type of health data requested by the client.

● String sessionId: a valid session token, representing the user who successfully

executed the login. This sessionId is obtained directly from the platform after

successful execution of login method.

● ResponseFormat responseFormat: one of the predefined ResponseFormat

enumeration values identifying the output format of the requested health data.

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 49

Return Value An instance of HealthRecord containing the most recent instance of a specific health data

type.

Exceptions ● Security exceptions related to the validation of the session.

● Network exceptions related to failure during remote communication.

Preconditions ● The citizen has successfully executed the authentication to the InteropEHRate

infrastructure.

● The session is still valid.

Operation getRecord

Name getRecord

Description This method allows the client to obtain a specific instance of health data identified

by its unique id.

Arguments ● String recordId: a valid id of a health data.

● String sessionId: a valid session token, representing the user who

successfully executed the login. This sessionId is obtained directly from

the platform after successful execution of login method.

● ResponseFormat responseFormat: one of the predefined ResponseFormat

enumeration values identifying the output format of the requested health

data.

Return Value An instance of Bundle containing the first page of the returned data (next pages

can be accessed using methods nextPage described below).

Exceptions ● Security exceptions related to the validation of the session.

● Network exceptions related to failure during remote communication.

● Access exception related to the ownership of data (only health data of the

authenticated citizen can be accessed).

Preconditions ● The citizen has successfully executed the authentication to the

InteropEHRate infrastructure.

● The session is still valid.

3.3.2. Involved Applications (A7, ENG)

This section provides a brief description of the two applications involved in the use of R2D, the S-EHR app

and the National EHR.

3.3.2.1. S-EHR Application

S-EHR Application is also described in Section 2.3.2.1 of the current document.

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 50

3.3.2.2. Extended NCP

As described in sections 3.1 and 3.2, the main objective of the eHealth Network and the CEF Programme

were to foster interoperability between European eHealth systems in order to allow European citizens to

access to health care centres and be treated (in case of emergency or not) all over Europe. eHDSI project

defined the EU software architecture to support interoperability between European eHealth systems,

introducing the NCP, a web service acting as a proxy for a National EHR and providing a common interface

and a common view of whichever European EHR belonging to the eHDSI federation. The Extended NCP

described in this paragraph refers to an extension of the base NCP defined in eHDSI, the extensions regards

two specific points:

● Authentication policy: eHDSI does not consider the citizen as an active actor, requests to an NCP

can be submitted only by another NCP and not by a software acting on behalf of a citizen.

Differently the Extended NCP allows a citizen to authenticate (and access) to the NCP of his

country.

● Adoption of R2D protocol: the Extended NCP adopts R2D as standard for the exchange of health

data.

3.3.3. R2D Interface Interactions
The following UML sequence diagram shows how the R2D API, described in previous section, may be used

to retrieve health data of a citizen. As already said, the R2D is not a rigid protocol and the same results may

be obtained using different sequences of methods invocation; the objective of this sequence diagram is to

show one of the possible sequences of invocations in order to perform a search and browse all pages of

data (in which total results have been segmented).

The sequence diagram shows the usage of the following four methods: getLastRecord(), getRecords(),

getRecord(), nextPage(), in the diagram, the invocation of these methods are highlighted in red. The actors

of this sequence diagram are the following:

● Citizen: a generic citizen interested in accessing his health data. The citizen is an active actor, he is

the one that starts the import of data and that defines what kind of data must be imported.

● S-EHR App: the app used by the citizen to send requests to the NCP Node. The app represents a

client of the R2D protocol.

● NCP Node: A National Contact Point as described in the eHDSI platform, but also implementing the

R2D protocol (represents the server side of the protocol).

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 51

Figure 15 - R2D protocol interactions

Following a detailed description of the sequence diagram:

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 52

● Step 1 - authentication: this is a preliminary step, that moves the R2D state from

NOT_AUTHENTICATED to AUTHENTICATED and allows the app citizen to gain access to all the

services of the R2D protocol. A detailed description of this specific interaction is provided in the

deliverables about security of work package 3.

● Step 2 - import: this is the step started by the citizen that triggers the import of health data from

the remote repository. This step is composed by the following sub steps and its execution foresees

the provisioning of some parameters by the citizen, in order to drive the data download. The

parameters are the following: i) healthRecordTypes[]: an array of predefined values containing the

types of health data requested by the client; ii) fromDate: a date indicating the day after which the

requested health data must have been produced.

○ Step 2.1 - getLastResource: optional step executed only if the citizen has requested only to

download his / her patient summary. In this case the client invokes the protocol method

named getLastResource(), providing as input parameter the enum value

PATIENT_SUMMARY. The method returns to the client the most recent instance of

HealthRecord of type HealthRecordType.PATIENT_SUMMARY. The patient summary is now

available to the client for storing.

○ Step 2.2 - getAllRecords: optional step executed only if the citizen has requested more

than one type of HealthRecord. In this case the client invokes the protocol method named

getRecords(), passing as input parameters the array of types provided by the citizen and

the reference date. This method returns an instance of Bundle containing only the first of

the overall pages that compose the entire result.

○ Step 2.3 - getRecord: at this point, the client has obtained the first page of the overall

results and starts looping the items of the current page (entries of the bundle) processing

each one of them. If during this processing, the client needs to download a health data

related to the one under processing, the client will invoke the protocol method named

getRecord(), passing the id of the related resource as input. After this invocation, the client

is able to process both the primary health data and its related resource.

○ Step 2.4 - nextPage: when the client has fetched all the entries in the bundle, it requests

the next bundle by invoking the method nextPage() and providing as input the current

bundle. In case there is another page to be read, the client gets back the next bundle and

continues processing it, otherwise it gets back a null value indicating that all results have

been fetched.

So far, R2D has been described only by a conceptual point of view, while the following sections provide

concrete specifications of R2D realized using FHIR and eHDSI.

3.3.4. R2D over FHIR
This section describes a specific realization of the R2D based on the FHIR API query language [FHIR API

SPEC], operations of conceptual R2D (described in previous section) are mapped to specific RESTFul FHIR

invocations. In particular for each conceptual operation will be specified:

● the HTTP method to invoke;

● the type of FHIR resource involved;

● The allowed parameters and, if needed, the constraints defined over parameter values.

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 53

Furthermore, this section shows how the R2D protocol may be offered by an EHR compliant to the FHIR

standard.

Operation getAllRecords(fromDate : Date, sessionId : String, responseFormat : ResponseFormat) : Bundle

Realization of method getAllRecords() follows the same rules of method getRecords() when passed all

values of the enumeration HealthRecordType. For this reason both methods are described in the following

paragraph.

Operation getRecords(healthRecordTypes : HealthRecordType[], fromDate : Date, sessionId : String,

responseFormat : ResponseFormat) : Bundle

The method getRecords() allows a client to retrieve different kinds of health data related to the same

patient, the client specifies what are the kind of health data to be retrieved by using the input parameter

named healthRecordTypes : HealthRecordType[] (every value passed as input in the array of

HealthRecordType corresponds to retrieve a specific type of FHIR Resource). Although the FHIR

specifications allow executing queries over different kind of Resources (simulating the SQL UNION

operator), these kind of queries are strongly limited by restrictions to the applicable set of search

parameters that must be common to all involved Resource types, reducing the capabilities provided by

single-resource query. Moreover, these restrictions do not allow to execute correctly the queries needed by

the protocol.

So, for each value passed in the input array of HealthRecordType a specific FHIR query must be executed,

and the overall result of this method is the logical union of all results obtained by the individual query

performed. The following paragraphs describes the query to be executed (i.e. by invoking a specific FHIR

service) for each of the possible values. Note that for some combination of values, several queries have to

be executed (for instance, two queries have to be executed when the parameter HealthRecordTypes

contains the value PATIENT_SUMARY and the parameter ResponseFormat contains the value ALL)

If healthRecordTypes contains the value PATIENT_SUMMARY and ResponseFormat is one of

STRUCTURED_CONVERTED, STRUCTURED_UNCONVERTED, ALL, then the following FHIR restful service have

to be invoked:

● HTTP Method: GET

● Header Parameters:

○ Session token obtained by authentication method

○ Whatever parameter allowed from [FHIR API SPEC]

● FHIR Resource to be queried: Composition

● Search parameters:

Search Parameters

Name Type Mandatory Value

type token YES “http://loinc.org|60591-5”

subject reference OPTIONAL Optional parameter. If provided, the only allowed

valued is the reference to the patient who

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 54

performed authentication. If not provided, it IS

implicitly assumed to be the patient who performed

the authentication.

_include string YES “*”

Examples:

1. GET <base url>/Composition?type=”http://loinc.org|60591-5”&_include=*

2. GET <base url>/Composition?subject=<REF TO AUTH USER>&type=”http://loinc.org|60591-

5”&_include=*

If healthRecordTypes contains the value PATIENT_SUMMARY and ResponseFormat is one of

UNSTRUCTURED, ALL, then the following FHIR restful service has to be invoked:

● HTTP Method: GET

● Header Parameters:

○ Session token obtained by authentication method

○ Whatever parameter allowed from [FHIR API SPEC]

● FHIR Resource to be queried: DocumentReference

● Search parameters:

Search Parameters

Name Type Mandatory Value

subject reference YES Optional parameter. If provided, the only allowed

valued is the reference to the patient who

performed authentication. If not provided, it IS

implicitly assumed to be the patient who performed

the authentication.

type token YES “http://loinc.org|60591-5”

date date OPTIONAL Optional parameter that has to be used if the value

of input parameter fromDate is not null. In this case

it must be used chained to the "ge" comparative

operator in order to retrieve all MedicationRequest

instances that have been authored starting from

fromDate.

Examples:

1. GET <base url>/DocumentReference?type=”http://loinc.org|60591-5”

2. GET <base url>/DocumentReference?subject=<REF TO AUTH USER>&type=”http://loinc.org|60591-

5”

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 55

Otherwise, if ResponseFormat passed by client is ALL, then both queries described above MUST be

executed. In this case, the search is spread over both FHIR resource types DocumentReference

(unstructured) and Composition (structured).

If healthRecordTypes contains the value PRESCRIPTION, and ResponseFormat is one of

STRUCTURED_CONVERTED, STRUCTURED_UNCONVERTED, ALL, then the corresponding FHIR restful service

to be invoked is the following one:

● HTTP Method: GET

● Header Parameters:

○ Session token obtained by authentication method

○ Whatever parameter allowed from [FHIR API SPEC]

● FHIR Resource to be queried: MedicationRequest

● Allowed search parameters:

Search Parameters

Name Type Mandatory Value

patient reference OPTIONAL Optional parameter. If provided, the only allowed

valued is the reference to the patient who

performed authentication. If not provided, it IS

implicitly assumed to be the patient who performed

the authentication.

authoredon date OPTIONAL Optional parameter that has to be used if the value

of input parameter fromDate is not null. In this case

it must be used chained to the "ge" comparative

operator in order to retrieve all MedicationRequest

instances that have been authored starting from

fromDate.

Examples:

1. GET <base url>/MedicationRequest?patient=<REF TO AUTH USER>

2. GET <base url>/MedicationRequest?patient=<REF TO AUTH USER>&authoredon=ge2019-03-14

3. GET <base url>/MedicationRequest?authoredon=ge2019-03-14

If healthRecordTypes contains the value PRESCRIPTION, and ResponseFormat is one of UNSTRUCTURED,

ALL, then the corresponding FHIR restful service to be invoked is the following one:

● HTTP Method: GET

● Header Parameters:

○ Session token obtained by authentication method

○ Whatever parameter allowed from [FHIR API SPEC]

● FHIR Resource to be queried: DocumentReference

● Allowed search parameters:

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 56

Search Parameters

Name Type Mandatory Value

subject reference YES Optional parameter. If provided, the only allowed

valued is the reference to the patient who

performed authentication. If not provided, it IS

implicitly assumed to be the patient who performed

the authentication.

type token YES “http://loinc.org|57828-6”

date date OPTIONAL Optional parameter that has to be used if the value

of input parameter fromDate is not null. In this case

it must be used chained to the "ge" comparative

operator in order to retrieve all MedicationRequest

instances that have been authored starting from

fromDate.

Examples:

1. GET <base url>/DocumentReference?patient=<REF TO AUTH USER>&type=”http://loinc.org|57828-

6”

2. GET <base url>/DocumentReference?date=ge2019-03-14&type=”http://loinc.org|57828-6”

If ResponseFormat passed by client is ALL, then both queries described above MUST be executed. In this

case, the search is spread over both FHIR resource types DocumentReference (unstructured) and

MedicationRequest (structured).

Otherwise, if healthRecordTypes contains the value DIAGNOSTIC_REPORT, ResponseFormat is one of

STRUCTURED_CONVERTED, STRUCTURED_UNCONVERTED, ALL, then the corresponding FHIR restful service

to be invoked is the following one:

● HTTP Method: GET

● Header Parameters:

○ Session token obtained by authentication method

○ Whatever parameter allowed from [FHIR API SPEC]

● FHIR Resource to be queried: DiagnosticReport

● Allowed search parameters:

Search Parameters

Name Type Mandatory Value

subject reference OPTIONAL Optional parameter. If provided, the only allowed

valued is the reference to the patient who performed

authentication. If not provided, it IS implicitly

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 57

assumed to be the patient who performed the

authentication.

date date OPTIONAL Optional parameter that has to be used if the value of

input parameter fromDate is not null. In this case it

must be used chained to the "ge" comparative

operator in order to retrieve all DiagnosticReport

instances that have been created starting from

fromDate.

Examples:

1. GET <base url>/DiagnosticReport?subject=<REF TO AUTH USER>

2. GET <base url>/DiagnosticReport?subject=<REF TO AUTH USER>&date=ge2012-01-01

3. GET <base url>/DiagnosticReport?date=ge2012-01-01

If healthRecordTypes contains the value DIAGNOSTIC_REPORT, ResponseFormat is one of UNSTRUCTURED,

ALL, then the corresponding FHIR restful service to be invoked is the following one:

● HTTP Method: GET

● Header Parameters:

○ Session token obtained by authentication method

○ Whatever parameter allowed from [FHIR API SPEC]

● FHIR Resource to be queried: DocumentReference

● Allowed search parameters:

Search Parameters

Name Type Mandatory Value

subject reference OPTIONAL Optional parameter. If provided, the only allowed

valued is the reference to the patient who performed

authentication. If not provided, it IS implicitly

assumed to be the patient who performed the

authentication.

type token YES “http://loinc.org|11502-2”

date date OPTIONAL Optional parameter that has to be used if the value of

input parameter fromDate is not null. In this case it

must be used chained to the "ge" comparative

operator in order to retrieve all DiagnosticReport

instances that have been created starting from

fromDate.

Examples:

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 58

1. GET <base url>/DocumentReference?subject=<REF TO AUTH USER>&type=”http://loinc.org|11502-

2”

2. GET <base url>/DocumentReference?type=”http://loinc.org|11502-2”&date=ge2012-01-01

If ResponseFormat passed by client is ALL, then both queries described above MUST be executed. In this

case, the search is spread over both FHIR resource types DocumentReference (unstructured) and

DiagnosticReport (structured).

Finally, for what concerns the requests of health data of type DISCHARGE_REPORT, it will be specified in the

next version of the current deliverable, after release of deliverable [D2.7].

Operation getLastRecord(healthRecordType : HealthRecordType, sessionId : String, responseFormat :

ResponseFormat) : HealthRecord

This method returns the most recent version of a specific kind of health data of a citizen. The kind of health

data requested is specified by the client with the argument healthRecordType.

If healthRecordTypes contains the value PATIENT_SUMMARY and ResponseFormat is one of

STRUCTURED_CONVERTED, STRUCTURED_UNCONVERTED, ALL, then the corresponding FHIR restful service

to be invoked is the following one:

● HTTP Method: GET

● Header Parameters:

○ Session token obtained by authentication method

○ Whatever parameter allowed from [FHIR API SPEC]

● FHIR Resource to be queried: Composition

● Allowed search parameters:

Search Parameters

Name Type Mandatory Value

Type token YES “http://loinc.org|60591-5”

subject reference OPTIONAL Optional parameter. If provided, the only allowed

valued is the reference to the patient who

performed authentication. If not provided, it IS

implicitly assumed to be the patient who

performed the authentication.

_include string YES “*”

_sort YES -date

_count YES 1

Examples:

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 59

1. GET <base url>/Composition?type=”http://loinc.org|60591-5”_include=*&_sort=-date&count=1

If healthRecordTypes contains the value PATIENT_SUMMARY and ResponseFormat is one of

UNSTRUCTURED, ALL, then the corresponding FHIR restful service to be invoked is the following one:

● HTTP Method: GET

● Header Parameters:

○ Session token obtained by authentication method

○ Whatever parameter allowed from [FHIR API SPEC]

● FHIR Resource to be queried: DocumentReference

● Search parameters:

Search Parameters

Name Type Mandatory Value

subject reference YES Optional parameter. If provided, the only allowed

valued is the reference to the patient who

performed authentication. If not provided, it IS

implicitly assumed to be the patient who performed

the authentication.

type token YES “http://loinc.org|60591-5”

date date OPTIONAL Optional parameter that has to be used if the value

of input parameter fromDate is not null. In this case

it must be used chained to the "ge" comparative

operator in order to retrieve all MedicationRequest

instances that have been authored starting from

fromDate.

_sort YES -date

_count YES 1

Examples:

1. GET <base url>/DocumentReference?type=”http://loinc.org|60591-5”&_sort=-date&count=1

If ResponseFormat passed by client is ALL, then both queries described above MUST be executed. In this

case, the search is spread over both FHIR resource types DocumentReference (unstructured) and

Composition (structured).

Otherwise, if healthRecordTypes contains the value PRESCRIPTION and ResponseFormat is one of

STRUCTURED_CONVERTED, STRUCTURED_UNCONVERTED, ALL, then the corresponding FHIR restful service

to be invoked is the following one:

● HTTP Method: GET

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 60

● Header Parameters:

○ Session token obtained by authentication method

○ Whatever parameter allowed from [FHIR API SPEC]

● FHIR Resource to be queried: MedicationRequest

● Allowed search parameters:

Search Parameters

Name Type Mandatory Value

patient reference OPTIONAL Optional parameter. If provided, the only allowed

valued is the reference to the patient who

performed authentication. If not provided, it IS

implicitly assumed to be the patient who performed

the authentication.

_sort YES -authoredon

_count YES 1

Examples:

1. GET <base url>/MedicationRequest?patient=<REF TO AUTH USER>&_sort=-authoredon&_count=1

2. GET <base url>/MedicationRequest?&_sort=-authoredon&_count=1

If healthRecordTypes contains the value PRESCRIPTION, and ResponseFormat is one of UNSTRUCTURED,

ALL, then the corresponding FHIR restful service to be invoked is the following one:

● HTTP Method: GET

● Header Parameters:

○ Session token obtained by authentication method

○ Whatever parameter allowed from [FHIR API SPEC]

● FHIR Resource to be queried: DocumentReference

● Allowed search parameters:

Search Parameters

Name Type Mandatory Value

subject reference YES Optional parameter. If provided, the only allowed

valued is the reference to the patient who

performed authentication. If not provided, it IS

implicitly assumed to be the patient who performed

the authentication.

type token YES “http://loinc.org|57828-6”

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 61

date date OPTIONAL Optional parameter that has to be used if the value

of input parameter fromDate is not null. In this case

it must be used chained to the "ge" comparative

operator in order to retrieve all MedicationRequest

instances that have been authored starting from

fromDate.

_sort YES -date

_count YES 1

Examples:

1. GET <base url>/DocumentReference?type=”http://loinc.org|57828-6”&_sort=-date&_count=1

2. GET <base url>/DocumentReference?patient=<REF TO AUTH USER>&type=”http://loinc.org|57828-

6”&_sort=-date&_count=1

If ResponseFormat passed by client is ALL, then both queries described above MUST be executed. In this

case, the search is spread over both FHIR resource types DocumentReference (unstructured) and

MedicationRequest (structured).

Otherwise, if healthRecordTypes contains the value DIAGNOSTIC_REPORT and ResponseFormat is one of

STRUCTURED_CONVERTED, STRUCTURED_UNCONVERTED, ALL, then the corresponding FHIR restful service

to be invoked is the following one:

● HTTP Method: GET

● Header Parameters:

○ Session token obtained by authentication method

○ Whatever parameter allowed from [FHIR API SPEC]

● FHIR Resource to be queried: DiagnosticReport

● Allowed search parameters:

Search Parameters

Name Type Mandatory Value

subject reference OPTIONAL Optional parameter. If provided, the only allowed valued

is the reference to the patient who performed

authentication. If not provided, it IS implicitly assumed to

be the patient who performed the authentication.

_sort YES -date

_count YES 1

Examples:

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 62

1. GET <base url>/DiagnosticReport?&_sort=-date&_count=1

2. GET <base url>/DiagnosticReport?subject=<REF TO AUTH USER>&_sort=-date&_count=1

If healthRecordTypes contains the value DIAGNOSTIC_REPORT, ResponseFormat is one of UNSTRUCTURED,

ALL, then the corresponding FHIR restful service to be invoked is the following one:

● HTTP Method: GET

● Header Parameters:

○ Session token obtained by authentication method

○ Whatever parameter allowed from [FHIR API SPEC]

● FHIR Resource to be queried: DocumentReference

● Allowed search parameters:

Search Parameters

Name Type Mandatory Value

subject reference OPTIONAL Optional parameter. If provided, the only allowed

valued is the reference to the patient who performed

authentication. If not provided, it IS implicitly

assumed to be the patient who performed the

authentication.

type token YES “http://loinc.org|11502-2”

date date OPTIONAL Optional parameter that has to be used if the value of

input parameter fromDate is not null. In this case it

must be used chained to the "ge" comparative

operator in order to retrieve all DiagnosticReport

instances that have been created starting from

fromDate.

_sort YES -date

_count YES 1

Examples:

1. GET <base url>/DocumentReference?subject=<REF TO AUTH USER>&type=”http://loinc.org|11502-

2”&date=ge2012-01-01&_sort=-date&_count=1

2. GET <base url>/DocumentReference?type=”http://loinc.org|11502-2”&date=ge2012-01-01&_sort=-

date&_count=1

If ResponseFormat passed by client is ALL, then both queries described above MUST be executed. In this

case, the search is spread over both FHIR resource types DocumentReference (unstructured) and

DiagnosticReport (structured).

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 63

Finally, for what concerns the requests of health data of type DISCHARGE_REPORT, it will be specified in the

next version of the current deliverable, after release of deliverable [D2.7].

Operation getRecord(recordId : String, sessionId : String) : HealthRecord

The realization of this method in FHIR, relies on the direct access to a specific resource instance, by using an

absolute URI retrieved by fetching another instance of health data (belonging to the authenticated citizen).

In R2D protocol, ids of resources can be discovered only by browsing an instance of health data returned by

search methods.

Direct access to health data by id is authorized only if the referenced data belongs to the authenticated

user.

Operation nextPage(bundle : Bundle, sessionId : String) : Bundle

The realization of this method in FHIR, relies on the built-in pagination functionalities defined directly by

FHIR specifications of Bundles resource. A Bundle contains the attribute named next contained in the main

attribute (of type array) called link, the next attribute contains the entire URI of the service to be invoked in

order to retrieve the next page of data.

3.3.5. R2D over extended eHDSI

This section describes a partial realization of the R2D can be based on the eHDSI API specifications [NCPeH

ARCH SPECS]. Operations of conceptual R2D (previously described in this deliverable) are mapped to

specific eHDSI SOAP invocations. In particular for each conceptual operation will be specified:

● the eHDSI interface(s) involved;

● the methods of the interfaces to be invoked;

● The arguments provided to methods and, if needed, the constraints defined over arguments

values.

Current eHDSI protocol states [EHDSI SYS SPECS] that in order to invoke business methods for retrieving

health data of a citizen, a preliminary phase named citizen identification must be executed by an HCP

authenticated to the National eHealth system. While in this document it is described an Extended eHDSI

where in addition to the current defined protocol, a citizen is also allowed to authenticate to its country

NCP in order to request his health data avoiding the preliminary citizen identification phase made by an

HCP.

Furthermore, current eHDSI technical specifications do not cover the whole kind of health data defined in

[EUCBEHR REC] by the EU Commission, they cover only the request of the Patient Summary and of the

ePrescription / eDispensation. For this reason, some of the operations defined by the R2D cannot be

translated (for the moment) into eHDSI service invocations.

Operation getAllRecords(fromDate : Date, sessionId : String, responseFormat : ResponseFormat) : Bundle

Realization of method getAllRecords() follow the same rules of method getRecords() when passed all values

of the enumeration HealthRecordType. For this reason both methods are described in the following

paragraph.

Operation getRecords(healthRecordTypes : HealthRecordType[], fromDate : Date, sessionId : String,

responseFormat : ResponseFormat) : Bundle

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 64

The method getRecords() allows a client to retrieve different kinds of health data related to the same

patient. The client specifies what are the kind of health data to be retrieved by using the input parameter

named healthRecordTypes : HealthRecordType[] (every value passed as input in the array of

HealthRecordType corresponds to retrieve a specific type of FHIR Resource). For each value passed in the

input array of HealthRecordType a specific eHDSI service must be executed, and the overall result of this

method is the logical union of all results obtained by the individual query performed. Due to the current

eHDSI limitations this method can be translated only for values: PATIENT_SUMMARY and PRESCRIPTION.

If healthRecordTypes contains the value PATIENT_SUMMARY, then the corresponding eHDSI service to be

invoked is the following one:

● eHDSI Service Interface: PatientService

● Service Interface method: list()

● Header Parameters:

○ Session token obtained by authentication method

○ epSOS HCP Identity Assertion
● Operation arguments: an instance of ListPatientRequest containing:

Search Parameters

Name Mandatory Value

Patient Identifier YES The only allowed valued is the reference to the patient who

performed authentication. If not provided, it IS implicitly

assumed to be the patient who performed the authentication.

epSOS CDA template

qualifier

OPTIONAL Code defining the output format of requested health data. It

may be an epSOS CDA common template or document coded

accorded to the source of health data. The value of this

argument is related to the value of the argument

responseFormat and must be mapped as defined in the

following list:

● STRUCTURED_CONVERTED: “urn:epSOS:ps:ps:2010”

● STRUCTURED_UNCONVERTED: “urn:epSOS:ps:ps:2010”

● UNSTRUCTURED: “urn:ihe:iti:xds-sd:pdf:2008”

● ALL: null

If healthRecordTypes contains the value PRESCRIPTION, then the corresponding eHDSI service to be

invoked is the following one:

● eHDSI Service Interface: OrderService

● Service Interface method: list()

● Header Parameters:

○ Session token obtained by authentication method

○ epSOS HCP Identity Assertion
● Operation arguments: an instance of ListOrderRequest containing:

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 65

Search Parameters

Name Mandatory Value

Patient Identifier YES The only allowed valued is the reference to the patient who

performed authentication. If not provided, it IS implicitly

assumed to be the patient who performed the authentication.

epSOS CDA template
qualifier

OPTIONAL Code defining the output format of requested health data. It

may be an epSOS CDA common template or document coded

accorded to the source of health data. The value of this

argument is related to the value of the argument

responseFormat and must be mapped as defined in the

following list:

● STRUCTURED_CONVERTED: “urn:epSOS:ps:ps:2010”

● STRUCTURED_UNCONVERTED:

“urn:epSOS:ps:ps:2010”

● UNSTRUCTURED: “urn:ihe:iti:xds-sd:pdf:2008”

● ALL: null

Operation getLastRecord(healthRecordType : HealthRecordType, sessionId : String, responseFormat :

ResponseFormat) : HealthRecord

Realization of this method follow the same rules of previous method, with the addition of a final sorting to

reorder the set of data returned from the NCP from the most recent to the oldest.

If healthRecordTypes contains the value PATIENT_SUMMARY, then the corresponding set of returned data

has to be sorted in descending way using the release date of the Patient Summary as sort criteria.

If healthRecordTypes contains the value PRESCRIPTION, then the corresponding set of returned data has to

be sorted in descending way using the release date of the Prescription as sort criteria.

Operation getRecord(recordId : String, sessionId : String, responseFormat : ResponseFormat) :

HealthRecord

With the current version of eHDSI there is no explicit method to retrieve referenced health data. It is

assumed that every set of health data returned from a NCP contains all referenced health data in the

returned bundle.

Operation nextPage(bundle : Bundle, sessionId : String) : Bundle

With the current version of eHDSI there is no explicit reference to pagination of results, so in this version of

the protocol data cannot be segmented into pages, they’ll be retrieved always in a single page. This method

will always return an empty Bundle.

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 66

4. CONCLUSIONS AND NEXT STEPS
The objective of this report was to deliver the initial version of the design and the specification of both the

D2D and the R2D protocols. With the implementation of D2D it will become feasible to achieve the

exchange of healthcare related data between a healthcare practitioner and a mobile application of a

citizen, without the usage of internet connection, whereas with the implementation of R2D it will become

feasible to exchange healthcare related data between any EHR or S-EHR Cloud and a mobile application of a

citizen, with the usage of internet. In the same notion as the other reports of the InteropEHRate project,

this document presents a first draft of the intended content of the two libraries and their further

functionality purposes. However, it should be mentioned that other two updated versions of this report are

planned to be released. The one is planned to be released on March 2020, whilst the final one is planned to

be released on March 2021, both of them including the relevant updates, of both the D2D and the R2D

protocols, that will have taken place until then. In more detail, regarding the specification of the D2D

protocol it should be mentioned that in the 1st version of the D2D protocol specification [D4.1], the

specification was performed based on the Android Bluetooth API since the D2D protocol is currently in a

very immature phase, and we would like to perform additional research on the different platforms for

identifying the Bluetooth profile that can satisfy all the requirements as specified in D2.1 [D2.1]. In the next

version of the D2D protocol specification, the D2D protocol specification will be independent from any API

in order for any developer that would like to use this protocol to be able to use the listed operations or

develop her own operations, in order to implement the corresponding data exchange between a S-EHR and

an HCP application.

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 67

REFERENCES

● [D2.1] InteropEHRate consortium. D2.1 : User Requirements for cross-border HR integration - V1.

InteropEHRate project, 2019. www.interopehrate.eu/resources

● [D2.4] InteropEHRate consortium. D2.4 : InteropEHRate Architecture - V1. InteropEHRate project,

2019. www.interopehrate.eu/resources

● [D2.7] InteropEHRate consortium. D2.7 : FHIR profile for EHR interoperability - V1. InteropEHRate

project, Due on September 2019. www.interopehrate.eu/resources

● [D3.1] InteropEHRate consortium. D3.1 : Specification of S-EHR mobile privacy and security

conformance levels - V1. InteropEHRate project, Due on March 2020.

www.interopehrate.eu/resources

● [D3.3] InteropEHRate consortium. D3.3 : Specification of remote and D2D IDM mechanisms for HRs

Interoperability - V1. InteropEHRate project, 2019. www.interopehrate.eu/resources

● [D4.8] InteropEHRate consortium. D4.8 : Specification of protocol and APIs for research health data

sharing - V1, Due on March 2020. www.interopehrate.eu/resources

● [ANT+] ANT+, Website: https://www.thisisant.com/consumer/ant-101/what-is-ant

● [BLUETOOTH] Bluetooth Core Specification, Website:

https://www.bluetooth.com/specifications/bluetooth-core-specification/

● [ENOCEAN] EnOcean Self-powered IoT, Website: https://www.enocean.com/en/

● [NFC] NFC forum, Website: https://nfc-forum.org/

● [RFID] How RFID Works, Website: https://electronics.howstuffworks.com/gadgets/high-tech-

gadgets/rfid.htm

● [ZIGBEE] Zigbee alliance, Website: https://www.zigbee.org/

● [WIFIDIRECT] Wi-Fi Direct, Website: https://www.wi-fi.org/discover-wi-fi/wi-fi-direct

● [ZWAVE] Z-wave, Website: https://www.z-wave.com/

● [SDDB] Li, Sing, and Jonathan Knudsen. Beginning J2ME: from novice to professional. Apress, 2006.

● [BCS] Bluetooth Core Specification, https://www.bluetooth.com/specifications/bluetooth-core-

specification/

● [BCSv4.0] Bluetooth Core Specification version 4.0,

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737

● [SPP] Serial Port Profile, https://learn.sparkfun.com/tutorials/bluetooth-basics/bluetooth-profiles

● [RFCOMM] RFCOMM protocol, https://www.amd.e-technik.uni-

rostock.de/ma/gol/lectures/wirlec/bluetooth_info/rfcomm.html

● [BASEBAND] Bluetooth Baseband, https://www.amd.e-technik.uni-

rostock.de/ma/gol/lectures/wirlec/bluetooth_info/baseband.html

● [LMP] Link Manager Protocol, https://www.amd.e-technik.uni-

rostock.de/ma/gol/lectures/wirlec/bluetooth_info/lmp.html

● [L2CAP] Logical Link Control and Adaptation Protocol, https://www.amd.e-technik.uni-

rostock.de/ma/gol/lectures/wirlec/bluetooth_info/l2cap.html

● [OSI] The protocol stack, http://www.informit.com/articles/article.aspx?p=27591&seqNum=5

● [GSM] GSM ts07.10, https://www.gefos-leica.cz/data/.../877301_leica_ts03_07_10_eql_v1-0-

0_en.pdf

● [SDP] Service Discovery Protocol Layer, https://www.amd.e-technik.uni-

rostock.de/ma/gol/lectures/wirlec/bluetooth_info/sdp.html

https://www.thisisant.com/consumer/ant-101/what-is-ant
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.enocean.com/en/
https://nfc-forum.org/
https://electronics.howstuffworks.com/gadgets/high-tech-gadgets/rfid.htm
https://electronics.howstuffworks.com/gadgets/high-tech-gadgets/rfid.htm
https://www.zigbee.org/
https://www.wi-fi.org/discover-wi-fi/wi-fi-direct
https://www.z-wave.com/
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://learn.sparkfun.com/tutorials/bluetooth-basics/bluetooth-profiles
https://www.amd.e-technik.uni-rostock.de/ma/gol/lectures/wirlec/bluetooth_info/rfcomm.html
https://www.amd.e-technik.uni-rostock.de/ma/gol/lectures/wirlec/bluetooth_info/rfcomm.html
https://www.amd.e-technik.uni-rostock.de/ma/gol/lectures/wirlec/bluetooth_info/baseband.html
https://www.amd.e-technik.uni-rostock.de/ma/gol/lectures/wirlec/bluetooth_info/baseband.html
https://www.amd.e-technik.uni-rostock.de/ma/gol/lectures/wirlec/bluetooth_info/lmp.html
https://www.amd.e-technik.uni-rostock.de/ma/gol/lectures/wirlec/bluetooth_info/lmp.html
https://www.amd.e-technik.uni-rostock.de/ma/gol/lectures/wirlec/bluetooth_info/l2cap.html
https://www.amd.e-technik.uni-rostock.de/ma/gol/lectures/wirlec/bluetooth_info/l2cap.html
http://www.informit.com/articles/article.aspx?p=27591&seqNum=5
https://www.gefos-leica.cz/data/.../877301_leica_ts03_07_10_eql_v1-0-0_en.pdf
https://www.gefos-leica.cz/data/.../877301_leica_ts03_07_10_eql_v1-0-0_en.pdf
https://www.amd.e-technik.uni-rostock.de/ma/gol/lectures/wirlec/bluetooth_info/sdp.html
https://www.amd.e-technik.uni-rostock.de/ma/gol/lectures/wirlec/bluetooth_info/sdp.html

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 68

● [ANDROIDBT] Android Bluetooth Overview,

https://developer.android.com/guide/topics/connectivity/bluetooth

● [EUCBEHR REC] COMMISSION RECOMMENDATION of 6.2.2019 on a European Electronic Health

Record exchange format.

● [EUCBEHR ANNEX] ANNEX to the Commission Recommendation of 6.2.2019 on a European

Electronic Health Record exchange format.

● [EHDSI SYS SPECS] EHDSI System Architecture Specification v2.1.0, 01 June 2017.

● [NCPeH ARCH SPECS] NCPeH System Architecture Specification v2.1.0, 01 June 2017.

● [FHIR API SPEC] FHIR RESTful API R4 (version 4.0.0), Website: https://www.hl7.org/fhir/http.html

● [OPENEHR] https://www.openehr.org/

https://developer.android.com/guide/topics/connectivity/bluetooth
https://www.hl7.org/fhir/http.html
https://www.openehr.org/

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 69

ANNEX
Users’ questionnaire

Communication Requirements
No. Requirement Answer to Requirement

CR1 What is the maximum delay in

communication that is acceptable to you?

A few seconds

CR2 Would you prefer the data to be exchanged

in a distance of a few centimeters between

the 2 devices, or in a distance of no more

than 10 meters?

There is not any preference

Table 3 - Communication Requirements

Data Requirements

No. Requirement Answer to Requirement

DR1 Do you foresee to exchange only textual

data? Will you also exchange images and

videos?

Both, textual data and images

DR2 For how long would you like the Physician

to keep the accessed data after the Citizen

leaves?

It depends on the situation

DR3 Would you like the Citizen to update her

EHR with the newly derived data (i.e. the

data that will emerge from her visit to the

Physician)?

Yes

Table 4 - Data Requirements

Security Requirements

No. Requirement Answer to Requirement

SR1 Should the data exchange part be reliable

(e.g. requirement of confirmation

messages)?

Yes

SR2 How important is the authentication of the

parties?

Very important

InteropEHRate deliverable D4.1: Specification of remote and D2D protocol and APIs for HR exchange – V1

 70

SR3 Is the transferred data confidential? Yes

Table 4 - Security Requirements

User Interaction Requirements

No. Requirement Answer to Requirement

UI1 How many types of parties will be

involved? Only Physicians and Citizens?

HCPs and citizens

UI2 Who will initiate the process? The Physician

or the Citizen?

The Citizens

UI3 How would the Physician explain to the

Citizen the data she wants to access? How

would the Citizen understand the

Physician’s demands?

By providing an initial list of attribute

names

Table 5 - User Interaction Requirements

