

 InteropEHRate project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 826106.

D3.9

Design of libraries for HR security and privacy

services - V1

ABSTRACT

This deliverable provides the first version of the design of security and privacy services, in particular the

components and the functional primitives regarding identity management and consent management. The

content of this deliverable derived from the InteropEHRate deliverables D3.3 - Specification of remote and

D2D IDM mechanisms for HRs Interoperability - V1 [D3.3] and D3.7 - Specification of consent management

and decentralized authorization mechanisms for HR Exchange - V1 [D3.7] and depict the major features

and principles of designing the security libraries addressing identity management, consent management

and crypto primitives.

Delivery Date 18th October 2019

Work Package WP3

Task T3.4

Dissemination Level Public

Type of Deliverable Report

Lead partner UBIT

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 ii

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 iii

CONTRIBUTORS

 Name Partner

Contributors Entso Veliou, Sofianna Menesidou, Dimitris

Papamartzivanos

UBIT

 Salima Houta, Marcel Klötgen FRAU

Reviewers Salima Houta, Marcel Klötgen FRAU

 Chrysostomos Symvoulidis BYTE

LOGTABLE

Version Date Change Author Partner

0.1 2019-09-02 First draft of ToC Sofianna Menesidou UBIT

0.2 2019-09-17 Internal review Salima Houta,

Marcel Klötgen

FRAU

0.3 2019-09-18 Introduction Sofianna Menesidou UBIT

0.4 2019-09-19 Mapping with the user

requirements

Sofianna Menesidou UBIT

0.5 2019-09-22 HR Security and Privacy

Fundamentals

Entso Veliou UBIT

0.6 2019-10-04 Mapping with the user

requirements

Sofianna Menesidou UBIT

0.7 2019-10-07 HR security and privacy service

library (d2d)

Entso Veliou,

Sofianna Menesidou

UBIT

0.8 2019-10-08 HR security and privacy service

library (r2d)

Entso Veliou,

Sofianna Menesidou

UBIT

0.9 2019-10-09 HR security and privacy service

library (d2d) and hr security

and privacy service library

(r2d)

Entso Veliou,

Sofianna

Menesidou, Dimitris

Papamartzivanos

UBIT

1.0 2019-10-10 Conclusions Sofianna Menesidou UBIT

1.1 2019-10-14 Review Salima Houta FRAU

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 iv

1.2 2019-10-14 Review Chrysostomos

Symvoulidis

BYTE

1.3 2019-10-17 Quality check Argyro

Mavrogiorgou

UPRC

1.4 2019-10-17 Final check Laura Pucci ENG

1.5 2019-10-18 Addressed final comments Sofianna Menesidou UBIT

vFinal 2019-10-18 Final version for submission Laura Pucci ENG

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 v

ACRONYMS

Acronym Term and definition

CA Certificate Authority

CEF Connecting Europe Facility

CSR Certificate Signing Request

D2D Device to Device protocol

DS Digital Signature

DSA Digital Signature Algorithm

eHDSI e-Health Digital Service Infrastructure

EHR Electronic Health Record

eID electronic identification

epSOS european patient Smart Open Services project

eTS Electronic Trust Services

HCP Healthcare Professional

HR Health Record

IDP Identity Provider

IoT Internet of Things

JCA Java Cryptography Architecture

JKS Java Key Store

JWE JSON Web Encryption

JWS JSON Web Signature

JWT JSON Web Token

OS Operating System

M-D2D-SM Mobile Device to Device Security Management

M-R2D-SM Mobile Remote to Device Security Management

MAC Message Authentication Code

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 vi

NCP National Contact Point

PKC Public Key Cryptography

PKI Public Key Infrastructure

T-D2D-SM Terminal Device to Device Security Management

TA Trusted Application

TEE Trusted Execution Environment

2FA Two-Factor Authentication

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 vii

TABLE OF CONTENT

1. INTRODUCTION .. 1

1.1. Scope of the document ... 1

1.2. Intended audience .. 2

1.3. Structure of the document .. 2

1.4. Updates with respect to previous version (if any) ... 2

2. MAPPING WITH THE USER REQUIREMENTS ... 3

3. HR SECURITY AND PRIVACY FUNDAMENTALS .. 5

3.1. Cross-border health interoperability - epSOS/eHDSI ... 5

3.2. eIDAS Electronic Identification and Trust Services .. 5

3.3. Public Key Infrastructure (PKI) .. 5

3.4. EJBCA .. 6

3.5. Digital Signature (DS) ... 7

3.6. JSON Web Token (JWT) ... 7

4. HR SECURITY AND PRIVACY SERVICE LIBRARY (D2D) .. 9

4.1. Zero-day operation (HCP) ... 9

4.2. Zero-day operation (Citizen) ... 9

4.3. Bluetooth Pairing .. 9

4.3.1. Communication steps on pairing .. 9

4.4. Consent ... 10

4.4.1. Communication steps on consent ... 10

4.5. Security Libraries in D2D ... 11

4.5.1. Security Library for S-EHR App / M-D2D-SM ... 11

4.5.2. Security Library for HCP App / T-D2D-SM.. 16

5. HR SECURITY AND PRIVACY SERVICE LIBRARY (R2D) .. 22

5.1. Authentication through Authentication Proxy .. 22

5.2. Security Libraries in R2D ... 23

5.2.1. Security Library for S-EHR App / M-R2D-SM ... 23

6. CONCLUSIONS AND NEXT STEPS ... 27

APPENDIX A .. 29

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 viii

LIST OF FIGURES

Figure 1 - Relation with other deliverables .. 1

Figure 2 - Hierarchy of Trust ... 6

Figure 3 - Digital Signature Process .. 7

Figure 4 - JSON Web Token ... 8

Figure 5 - Android KeyStore Class ... 11

Figure 6 - Security library components in D2D (M-D2D-SM .. 12

Figure 7 - Security library components in D2D (T-D2D-SM) .. 16

Figure 8 - Abstract R2D authentication .. 22

Figure 9 - Security library components in R2D (M-R2D-SM) ... 23

LIST OF TABLES

Table 1 - User Requirements and Security Libraries Mapping .. 4

Table 2 - Bluetooth pairing and security libraries step by step ... 10

Table 3 - Consent and security libraries step by step .. 10

Table 4 - fetchCertificate .. 13

Table 5 - fetchHCPCertificate ... 13

Table 6 - verifySignature ... 14

Table 7 - generateAPPCConsent ... 14

Table 8 - signAPPCConsent ... 15

Table 9 - verifyAPPCConsent ... 15

Table 10 - signAPPCConsent ... 16

Table 11 - fetchCertificate .. 17

Table 12 - signPayload.. 18

Table 13 - createPayload .. 18

Table 14 - fetchSEHRCertificate .. 19

Table 15 - generateAPPCConsent ... 20

Table 16 - signAPPCConsent ... 20

Table 17 - verifyAPPCConsent ... 21

Table 18 - getAuthenticationMeans ... 24

Table 19 - getAuthattributes .. 24

Table 20 - get2FAmeans ... 25

Table 21 - authenticate2FA .. 25

Table 22 - bindUserWith2FA ... 26

Table 23 - authenticate .. 26

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 1

1. INTRODUCTION

1.1. Scope of the document
The main goal of this document is to describe the initial version of the design of the security libraries

offered by the InteropEHRate Framework as a reference implementation of the HR security and privacy

services. The current document outlines the most important initial design features addressing identity

management, consent management based on crypto primitives. At this stage of project implementation,

the deliverable aims at depicting the major features and principles of designing the security libraries. A top-

down approach was followed in order to identify the internal interactions starting from the D2D and R2D

protocols.

In more detail, this deliverable describes two security libraries for D2D (M-D2D-SM and T-D2D-SM) and one

security library for R2D (M-R2D-SM) including the related external components. All security libraries are

Java-based in order to provide identity management, authentication and consent management. In general,

the security libraries invoked by the S-EHR App, the HCP Web App, the D2D library and the R2D library.

Similarly to other reports of the InteropEHRate project, this document presents just a first draft of the

design of the libraries offered by the InteropEHRate Framework as a reference implementation of HR

security and privacy services.

Figure 1 - Relation with other deliverables

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 2

1.2. Intended audience
The document is intended to security engineers, developers, architects, and all the InteropEHRate project

participants and partners interested to have an overview of how InteropEHRate will support HR security

and privacy services. These services will be described as libraries for mobile and web application developers

who desire to exploit and reuse the security functionalities offered by the InteropEHRate framework.

1.3. Structure of the document
The current document is organized in the following Sections:

Section 1 (the current section) introduces the overall concept of the document, defining its scope, intended

audience, and relation to the other project tasks and reports.

Section 2 describes the mapping between the security libraries and the user requirements introduced in

the Architecture of the InteropEHRate project.

Section 3 focuses on describing and explaining some key concepts of security, which will be used in

InteropEHRate framework.

Section 4 focuses on the design of the security libraries of the D2D case including the identity management,

consent management and cryptographic primitives.

Section 5 focuses on the design of the security libraries of the R2D case including the identity management,

consent management and cryptographic primitives.

Section 6 concludes the document, including future developments and updates for the two security

libraries.

1.4. Updates with respect to previous version (if any)
This is the first version of the deliverable. Not Applicable.

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 3

2. MAPPING WITH THE USER REQUIREMENTS
This section describes the mapping between the designed libraries for HR security and privacy services and

the user requirements. The user requirements have already identified in the Architecture of the

InteropEHRate project. Table 1 below presents all the security-related user requirements and the

corresponding implementation API provided by the security libraries to successfully satisfy the

requirement. Next sections will provide more details on the implementation aspects.

The security implementations targeting the Citizen as a main actor is for the M-D2D-SM and M-R2D-SM

components, while the security implementations targeting the HCP as a main actor is for the T-D2D-SM

components.

User Requirement Main

Actor

SW Application Implementation

1 Enabling of HCP identification

from HCP app

HCP HCP App fetchCertificate,

createPayload,

signPayload

2 Enabling of healthcare

organization identification

from HCP app

HCP HCP App fetchCertificate,

createPayload,

signPayload

3 Consent to S-EHR data

management

Citizen S-EHR Mobile App verifyAPPCConsent,

signAPPCConsent

4 Enabling of Citizen

identification from S-EHR

Citizen S-EHR Mobile App fetchCertificate,

fetchHCPCertificate,

verifySignature

5 D2D authorization to

download and upload S-EHR

data from HCP App

HCP HCP App getAuthenticationMeans,

getAuthattributes,

get2FAmeans,

authenticate,

bindUserWith2FA,

authenticate2FA

6 Consent to store Citizen's data HCP HCP App generateAPPCConsent,

signAPPCConsent,

verifyAPPCConsent

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 4

7 Data provenance tracking Data user S-EHR Mobile & HCP App Focus on the next year

8 Integrity of medical

information

Data user S-EHR Mobile & HCP App Focus on the next year

9 Confidentiality of medical

information

Data user S-EHR Mobile & HCP App Focus on the next year

Table 1 - User Requirements and Security Libraries Mapping

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 5

3. HR SECURITY AND PRIVACY FUNDAMENTALS
This section presents the terminology and all the main security aspects of the InteropEHRate project. This

section is necessary in order to justify the security-oriented solutions that InteropEHRate will provide

through the security libraries.

3.1. Cross-border health interoperability - epSOS/eHDSI
Smart Open Services for European Patients (epSOS) is the main European electronic Health (eHealth)

interoperability project co-funded by the European Commission and the partners [epSOS2014]. Results of

epSOS project have been used in its successor project called eHealth Digital Service Infrastructure (eHDSI or

eHealth DSI). eHDSI is focused on health data exchange and implemented by the Commission and the

Member States through the Connecting Europe Facility (CEF) Programme. The eHDSI connects eHealth

national contact points (NCP) allowing them to exchange two sets of health data: patient summaries and

ePrescriptions.

Despite InteropEHRate and epSOS/eHDSI projects are both focused on cross border health data exchange,

the context in which they operate is very different, especially for what concerns authentication. In epSOS

there is no authentication mechanism for the citizen, there is no app given to the citizen and the only user

that performs an electronic authentication is the HCP, but using proprietary authentication mechanism

provided by his country. In the context of InteropEHRate, we will further extend the ability for a citizen to

be able to authenticated and exchange his health data.

3.2. eIDAS Electronic Identification and Trust Services
The Regulation (EU) N°910/2014 on electronic identification and trust services for electronic transactions in

the internal market (eIDAS Regulation) adopted by the co-legislators on 23 July 2014 is a milestone to

provide a predictable regulatory environment to enable secure and seamless electronic interactions

between businesses, citizens and public authorities [eIDAS2014].

The eIDAS Regulation:

1. Ensures that people and businesses can use their own national electronic identification schemes

(eIDs) to access public services in other EU eID are available.

2. Creates a European internal market for eTS - namely electronic signatures, electronic seals, time

stamp, electronic delivery service and website authentication - by ensuring that they will work

across borders and have the same legal status as traditional paper based processes. Only by

providing certainty on the legal validity of all these services, businesses and citizens will use the

digital interactions as their natural way of interaction [eIDAS2014].

3.3. Public Key Infrastructure (PKI)
The Public key infrastructure (PKI) is the set of hardware, software, policies, processes, and procedures

required to create, manage, distribute, use, store, and revoke digital certificates and public-keys [PKI]. The

foundation of PKI is Public Key Cryptography (PKC). PKC, or asymmetric cryptography, is a cryptographic

system that uses pairs of keys: public keys which may be disseminated widely, and private keys which are

known only to the owner. In PKC, the two related keys, work together to provide encryption/decryption

and signing/verification functionalities. The public key — as the name suggests — is publicly available to

anyone, while the private key should never be shared.

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 6

The PKI is required to deliver the public keys to existing systems or users securely. The public key is

exchanged digitally in the form of digital certificates having a certain period of validity. The most known

standard defining the format of a certificate is the X.509, while the entity that issues a digital certificate is

the Certificate Authority (CA).

The Root CA is always a self-signed certificate. The root certificate, often called a trusted root, is at the

centre of the trust model that undergirds PKI. Every device includes something called a root store. A root

store is a collection of pre-downloaded root certificates (and their public keys) that live on the device itself.

Generally, the device will use whatever root store is native to its Operating System (OS), otherwise it might

use a third-party root store via an app like a web browser [THESSLSTORE2019].

In InteropEHRate, we follow the hierarchical approach and under the root CA we will create two more

singing certificate sub-authorities, namely the HCP’s CA and Citizen’s CA. In this way, the root CA is

protected Sub CAs. The public and private keys which will be issued by each sub CA will be stored to the

acquirer’s TEE (Trusted Execution Environment). The TEE is a secure area of the main processor of a

connected device which ensures sensitive data is stored, processed and protected in an isolated and

trusted environment. The TEE’s ability to offer safe execution of authorized security software, known as

‘trusted applications’ (TAs), enables it to provide end-to-end security by protecting the execution of

authenticated code, confidentiality, authenticity, privacy, system integrity and data access rights

[GLOBALPLATFORM2018]. A typical example of hierarchy of trust depicted in Figure 2 below. More

information on how the certificates are created is provided in Appendix A.

Figure 2 - Hierarchy of Trust

3.4. EJBCA
EJBCA is a free software public key infrastructure certificate authority software package maintained and

sponsored by the Swedish for-profit company PrimeKey Solutions AB, which holds the copyright to most of

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 7

the codebase [EJBCA2019]. EJBCA offers a multipurpose PKI software that supports multiple CAs and levels

of CAs to enable one to build a complete infrastructure (or several) for multiple use cases within one

instance of the software. EJBCA enables multiple integration and automation possibilities and issues

certificates to persons, infrastructure components and IoT (Internet of Things) devices. In addition, EJBCA is

flexible, scalable and secure and is installed at numerous eIDAS applications. In the context of

InteropEHRate, EJBCA will be used for the non-qualified certificates regarding the Variant 1 introduced in

deliverable D3.3 [[D3.3]].

3.5. Digital Signature (DS)
The term digital signature is used to refer to a category of e-signatures which are created using the PKC.

The terminology is often confusing, and the EU eIDAS Regulation has used terms such as “advanced

electronic signatures” and “qualified electronic signatures” in an effort to be technology-neutral. However,

practically the only way to implement them is to use digital signature based on PKI [DS2019]. The process

of digital signing requires that the signature generated by both the fixed message and the private key can

then be authenticated by its accompanied public key. At the time of verification the signer’s public key is

used to unwrap the digital signature code and compare it with the document to ensure a match. Figure 3

below presents the procedure to sign a document:

● Signing — This algorithm produces a signature upon receiving a private key and the message that is

being signed.

● Verification — This algorithm checks for the authenticity of the message by verifying it along with

the signature and the public key.

Figure 3 - Digital Signature Process

3.6. JSON Web Token (JWT)
JSON Web Tokens are an open, industry standard RFC 7519 [RFC7519] method for representing claims

securely between two parties. JWT is a compact, URL-safe means of representing claims to be transferred

between two parties. The claims in a JWT are encoded as a JSON object that is used as the payload of a

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 8

JSON Web Signature (JWS) structure or as the plaintext of a JSON Web Encryption (JWE) structure, enabling

the claims to be digitally signed or integrity protected with a Message Authentication Code (MAC) and/or

encrypted. The JWT consists of three parts structured as JSON objects:

● Header – identification of the algorithm used to encrypt the token

● Payload – information stored in the token

● Signature – encrypted signature of header and payload

The three parts are Base64Url encoded and separated by a dot delimiter (.), which enables the token to be

easily exchanged among systems and applications as a string value [TREDER2019]. In the context of

InteropEHRate, JWTs will be used for authentication in the remote scenario. An authentication proxy will be

responsible to authenticate the citizen and provide this token. The authorization service will store a

citizen's authorization claims in the payload of a JWT. The token will be evaluated by a service receiving an

API call bearing the token, enabling it to determine if the caller has access to the service's data or methods.

The JWT will be sent to the citizen’s side to enable the authenticated interaction with the server. Whenever

a request is sent to the authentication proxy, the token is sent along with the request. Typically this is done

in the authorization header like "Authorization: Bearer xxxxxx.yyyyy.zzzzzz". However, it could also be

passed in a POST body or in the URL itself as a query parameter. When the server sees the token, it decodes

it and compares the signature with the secret it has stored which would have been used to generate the

token in the first place. If everything matches, the request is authentic, and it responds with data,

otherwise it sends back an error message. The aforementioned steps are depicted in Figure 4 below.

Figure 4 - JSON Web Token

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 9

4. HR SECURITY AND PRIVACY SERVICE LIBRARY (D2D)
This section emphasizes on the calls of the security library focused on D2D and describes the way they

operate, their outputs and implementation details.

4.1. Zero-day operation (HCP)
On the first run of the HCP App, internet connection will be required. The HCP will generate a public and

private key. This pair of keys will be stored on the HCP's TEE (Trusted execution environment) of their PC.

The next step is for the HCP to generate a Certificate Signing Request (CSR). The CSR will be signed by an

intermediate singing CA and a digital certificate will be delivered to the HCP's device. The CSR will include

the HCP’s sufficient details needed to specify her/his identity.

4.2. Zero-day operation (Citizen)
On the first run of the S-EHR App, an Internet connection will be required. The citizen will generate a public

and private key. This pair of keys will be stored on the user's TEE (Trusted execution environment) of their

mobile phones (e.g. Android keystore). The next step is for the citizen to generate a Certificate Signing

Request (CSR). The CSR will be signed by an intermediate singing CA and a digital certificate will be

delivered to the citizen’s device. The CSR will include the citizen’s sufficient details needed to specify

her/his identity.

4.3. Bluetooth Pairing
As already introduced in D4.1 [D4.1], the main idea for the D2D scenario is the lack of Internet connection.

The following section will analyse step by step this communication and present thoroughly where the

security libraries is necessary to be invoked by the D2D protocol, the S-EHR app and HCP app.

4.3.1. Communication steps on pairing

We will present all the steps and calls that will take place between a citizen and HCP D2D pairing:

Physical World S-EHR App / M-D2D-SM HCP App / T-D2D-SM Security Library Calls

Zero Day Operation

completed for citizen

Stored Certificate for

citizen

- - fetchCertificate

Zero Day Operation

completed for HCP

- Stored Certificate for

HCP

- fetchCertificate

Creation of QR code

and Signed payload

MAC Address of HCP

endpoint and the digital

signature of the MAC has

been exposed to S-EHR

App

Generates QR code

that includes a

payload with the MAC

address concatenated

with its digitally

signature

- signPayload

- createPayload

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 10

User scans QR code S-EHR App fetches QRcode

and signature for

verification

- -

After connection

established

After the connection is

established we fetch the

HCP’s certificate to

validate the signature

After the connection is

established we fetch

the citizen’s certificate

- fetchHCPCertificate

- fetchSEHRCertificate

- verifySignature

Table 2 - Bluetooth pairing and security libraries step by step

4.4. Consent
In order for the processing to be lawful, personal data should be processed and used on the basis of the

consent of the data subject concerned or some other legitimate basis. Consent of the data subject means

any freely given, specific, informed and unambiguous indication of the data subject’s wishes by which he or

she, by a statement or by a clear affirmative action, signifies agreement to the processing of personal data

relating to him or her. Initially the S-EHR app generates and signs a consent to store the user’s data. After

the connection has been established between the two devices, a consent request will be sent from the HCP

to the citizen for data exchange (e.g. upload/download data). This consent needs to be double signed from

both parties before it is sent back to the HCP App.

4.4.1. Communication steps on consent

The following table presents all the steps and calls that take place between a citizen and HCP D2D consent

exchange:

Physical World S-EHR App / M-D2D-SM HCP App / T-D2D-SM Security Library Calls

Citizen gives his

consent store data to

S-EHR app

User receives a pop up

with necessary

information to store his

data

- - generateAPPCConsent

- signAPPCConsent

The HCP sends a

consent request

upload/download data

to the citizen

User receives a pop up

with necessary

information to

upload/download his data

HCP sends a consent

request

- generateAPPCConsent

- signAPPCConsent

Citizen accepts the

consent

User accepts and proceeds - - verifyAPPCConsent

- signAPPCConsent

HCP accepts the

consent

- HCP is notified and

accepts

- verifyAPPCConsent

Table 3 - Consent and security libraries step by step

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 11

The HCP will generate the consent in her/his HCP App and sign it with the already existing private key. The

consent will be sent to the citizen in order to be verified and signed by this entity. Finally, the double-signed

consent will return back to the HCP for verification.

4.5. Security Libraries in D2D
This section describes the functionalities of security libraries in the context of D2D.

4.5.1. Security Library for S-EHR App / M-D2D-SM

Security in Android devices, builds on the Java Cryptography Architecture (JCA), that provides API for digital

signatures, certificates, encryption, key generation and management. The Android keystore will be used to

store all the necessary keys and certificates. The KeyStore class is an engine class that supplies well-defined

interfaces to access and modify the information in a keystore. An example of Android KeyStore is depicted

in Figure 5 below. This class represents an in-memory collection of keys and certificates. KeyStore manages

two types of entries [JCA2018]:

● Key Entry - This type of keystore entry holds very sensitive cryptographic key information, which is

stored in a protected format to prevent unauthorized access. Typically, a key stored in this type of

entry is a secret key, or a private key accompanied by the certificate chain authenticating the

corresponding public key.

● Trusted Certificate Entry - This type of entry contains a single public key certificate belonging to

another party. It is called a trusted certificate because the keystore owner trusts that the public key

in the certificate indeed belongs to the identity identified by the subject (owner) of the certificate.

Each entry in a keystore is identified by an "alias" string. In the case of private keys and their associated

certificate chains, these strings distinguish among the different ways in which the entity may authenticate

itself. For example, the entity may authenticate itself using different certificate authorities, or using

different public key algorithms. Android support PKCS#12 key store files with .pfx or .p12 extensions.

Figure 5 - Android KeyStore Class

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 12

A high-level components diagram is presented in Figure 6 below.

Figure 6 - Security library components in D2D (M-D2D-SM

(a) Prerequisite

Operation fetchCertificate

Name fetchCertificate

Description This call generates an X.509 certificate signed by the citizen’s CA upon a CSR request.

This certificate is received and stored to the Android keystore of the mobile device.

When generating or importing a key into the Android keystore the key will be used if

the user has been authenticated first in the device. Once keys are in the keystore, they

can be used for cryptographic operations with the key material remaining non-

exportable [ANDROID2019]. The Android keystore in allows to access certificate and

keys from PKCS12 files. This operation is invoked by S-EHR App.

Arguments ● No arguments

Return Value ● PublicKey

Exceptions ● NoSuchKeyException

● KeyStoreException

● CertificateException

● NoSuchAlgorithmException

● IOException

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 13

Preconditions ● Internet Connection

● Public/Private key generation and storage in Android keystore

Table 4 - fetchCertificate

(b) After pairing / Identity Management

Operation fetchHCPCertificate

Name fetchHCPCertificate

Description After the bluetooth pairing establishment, the first message should be the transfer of

HCP public key (certificate). Such a message is necessary in order the S-EHR App to

be able to validate the HCP signature for identification purposes. This operation is

invoked by D2D library to transfer the HCP public key.

Arguments ● No arguments

Return Value ● HCP’s PublicKey encoded in base64

Exceptions ● Network exceptions related to Bluetooth state.

Preconditions ● Bluetooth Pairing has taken place

Table 5 - fetchHCPCertificate

Operation verifySignature

Name verifySignature

Description The S-EHR App scanned the QR code and receives the MAC address along with the

signature. This operation is invoked by S-EHR App.

Arguments ● scanned QR code

Return Value ● Boolean - true if the signature was verified, false if not.

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 14

Exceptions ● SignatureException - if this signature object is not initialized properly, or the

passed-in signature is improperly encoded or of the wrong type, etc.

Preconditions ● QR code scanned successfully

Table 6 - verifySignature

(c) After pairing / Consent Management

Operation generateAPPCConsent

Name generateAPPCConsent

Description S-EHR app creates and stores the consent, in XML format. This operation is

invoked by S-EHR App.

Arguments ● String From

● String To

● Date timestamp

● Date Duration

● String Purpose

● String Type

● String Reference text

Return Value ● Consent in XML format

Exceptions ● IOException

Preconditions ● Citizen gives his consent to store the data.

Table 7 - generateAPPCConsent

Operation signAPPCConsent

Name signAPPCConsent

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 15

Description The signature algorithm is the NIST standard Digital Signature Algorithm (DSA),

using DSA and SHA-256. The call will use the private key stored in the Android

keystore to initialize the signing operation. This operation is invoked by S-EHR

App.

Arguments ● Consent

Return Value ● byte[] - Returns the signature bytes of all the Consent

Exceptions ● SignatureException - if an error occurs or length is less than the actual

signature length.

Preconditions ● HCP has successfully fetched his credentials

Table 8 - signAPPCConsent

Operation verifyAPPCConsent

Name verifyAPPCConsent

Description This verifies that the HCP has signed with their digital signature the consent and

the citizen verify and acknowledges the data transfer. This operation is invoked

by S-EHR App.

Arguments ● Consent

● byte[] signature

Return Value ● Boolean - true if the signature was verified, false if not.

Exceptions ● SignatureException - if this signature object is not initialized properly, or

the passed-in signature is improperly encoded or of the wrong type,

etc.

Preconditions ● HCP has requested for the consent

Table 9 - verifyAPPCConsent

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 16

Operation signAPPCConsent

Name signAPPCConsent

Description The signature algorithm is the NIST standard Digital Signature Algorithm (DSA),

using DSA and SHA-256. The call will use the private key stored in the keystore

to initialize the signing operation. This operation is invoked by S-EHR App.

Arguments ● Consent

Return Value ● byte[] - Returns the signature bytes of all the Consent

Exceptions ● SignatureException - if an error occurs or length is less than the actual

signature length.

Preconditions ● HCP has successfully fetched his credentials

Table 10 - signAPPCConsent

4.5.2. Security Library for HCP App / T-D2D-SM

Java Keytool is a key and certificate management tool that is used to manipulate Java Keystores, and is

included with Java. A Java Keystore is a container for authorization certificates or public key certificates,

and is often used by Java-based applications for encryption, authentication, and serving over HTTPS. Its

entries are protected by a keystore password. A keystore entry is identified by an alias, and it consists of

keys and certificates that form a trust chain [ANICAS2014].

A high-level components diagram is presented in Figure 7 below.

Figure 7 - Security library components in D2D (T-D2D-SM)

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 17

(a) Before pairing / Identity Management

Operation fetchCertificate

Name fetchCertificate

Description This call generates an X.509 certificate from the HCP’s CA upon a CSR request.

This certificate is received and stored to the keystore of the HCP’s device. In

Java 9, the default keystore type will be changed to PKCS12, while in earlier

versions was the Java Key Store (JKS). PKCS12 is a file format to store

certificates and private keys. The KeyStore API in Java also allows to access

certificate and keys from PKCS12 files. This operation is invoked by HCP App.

Arguments ● No arguments

Return Value ● PublicKey

Exceptions ● NoSuchKeyException

● KeyStoreException

● CertificateException

● NoSuchAlgorithmException

● IOException

Preconditions ● Internet Connection

● Public/Private key generation and storage in keystore

Table 11 - fetchCertificate

Operation signPayload

Name signPayload

Description The signature algorithm is the NIST standard Digital Signature Algorithm (DSA),

using DSA and SHA-256. The call will use the private key stored in keystore to

initialize the signing operation. This operation is invoked by the HCP App.

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 18

Arguments ● MAC address

Return Value ● byte[] - Returns the signature bytes of all the MAC address

Exceptions ● SignatureException - if an error occurs or length is less than the actual

signature length.

Preconditions ● HCP has successfully fetched his credentials

Table 12 - signPayload

Operation createPayload

Name createPayload

Description The HCP creates the payload with their attributes (mac address, etc..) and the

signature to be used for the QR code. This operation is invoked by the HCP App.

Arguments ● MAC address

● signed MAC address

Return Value ● concatenated payload to feed the QR code

Exceptions ● No exceptions

Preconditions ● HCP has signed the MAC address

Table 13 - createPayload

(b) After pairing / Identity Management

Operation fetchSEHRCertificate

Name fetchSEHRCertificate

Description After the Bluetooth pairing is established, the first message should be the

transfer of citizen’s public key (certificate). The HCP app should fetch the

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 19

Certificate of S-EHR app in order to verify it’s public key. This operation is

invoked by the D2D library in order to transfer the citizen’s public key.

Arguments ● No arguments

Return Value ● Citizen’s public key encoded in base64

Exceptions ● Network exceptions related to Bluetooth state.

Preconditions ● Bluetooth pairing has taken place

Table 14 - fetchSEHRCertificate

(c) After pairing / Consent Management

Operation generateAPPCConsent

Name generateAPPCConsent

Description The HCP app creates the consent, in XML format, to upload/download data

to/from S-EHR app. This operation is invoked by HCP App.

Arguments ● String From

● String To

● Date timestamp

● Date Duration

● String Purpose

● String Type

● String Reference text

Return Value ● Consent in XML format

Exceptions ● IOException

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 20

Preconditions ● Citizen gives their consent to upload/download data.

● HCP gives their consent to upload/download data.

Table 15 - generateAPPCConsent

Operation signAPPCConsent

Name signAPPCConsent

Description The signature algorithm is the NIST standard Digital Signature Algorithm (DSA),

using DSA and SHA-256. The call will use the private key stored in the keystore

to initialize the signing operation. This operation is invoked by HCP App.

Arguments ● Consent

Return Value ● byte[] - Returns the signature bytes of all the Consent

Exceptions ● SignatureException - if an error occurs or length is less than the actual

signature length.

Preconditions ● The HCP has successfully fetched their credentials

Table 16 - signAPPCConsent

Operation verifyAPPCConsent

Name verifyAPPCConsent

Description This verifies that the citizen has signed with their digital signature the consent

and the HCP verify and acknowledges the data transfer. This operation is

invoked by the HCP App.

Arguments ● Consent

● byte[] signature

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 21

Return Value ● Boolean - true if the signature was verified, false if not.

Exceptions ● SignatureException - if this signature object is not initialized properly, or

the passed-in signature is improperly encoded or of the wrong type,

etc.

Preconditions ● The Citizen gives his consent to upload/download data.

Table 17 - verifyAPPCConsent

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 22

5. HR SECURITY AND PRIVACY SERVICE LIBRARY (R2D)
This section emphasizes on the calls of the security library focused on R2D and describes the way they

operate, their outputs and implementation details.

5.1. Authentication through Authentication Proxy
Since each nation employs its own different authentication mechanisms, in the context of InteropEHRate,

we will use pluggable authentication with different modalities. For that reason, an authentication proxy will

be used for InteropEHRate users to be authenticated. Authentication is an interaction between the S-EHR

app and Identity provider through the Authentication proxy. In our case, in order to test and be more

flexible throughout the project’s development period, we will create our own identity provider and verify

some test users like any real-life use case. Upon the verification of user’s identity from the identity

provider. Authentication proxy provides the persistent JWT token.

Two-factor authentication (2FA) adds an additional layer of security by introducing a second step to citizen

login. It takes something you know (i.e. your password), and adds a second factor, typically something you

physically have (such as your phone). Since both are required to log in, in the case where an attacker

obtains your password, the two-factor authentication would stop them for accessing your account. There

are a variety of methods that can be used for two-factor authentication. Some of these methods are text

messages, time-based tokens, fingerprint, face recognition and a more extreme one is using external

hardware like yubico. As a reference implementation of authentication mechanism, the FIDO U2F

mechanism will be provided. Figure 8, below depicts how the abstract R2D authentication mechanism.

Figure 8 - Abstract R2D authentication

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 23

To sum up, the Authentication proxy will:

● Authenticate the user requests from the S-EHR app;

● Interact with epSOS for the authentication and authorization requests from the S-EHR app;

● Evaluate the authentication and authorization by utilizing the JWT token.

5.2. Security Libraries in R2D
This section describes the functionalities of security libraries in the context of R2D.

5.2.1. Security Library for S-EHR App / M-R2D-SM

A high-level components diagram is presented in Figure 9 below.

Figure 9 - Security library components in R2D (M-R2D-SM)

Operation getAuthenticationMeans

Name getAuthenticationMeans

Description This call asks from the Identity Provider (IDP) the authentication means that are

necessary for authentication. This operation is invoked by S-EHR App.

Arguments ● No arguments

Return Value List <AuthMeans>

Exceptions ● Network exceptions

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 24

Preconditions ● Citizen has already registered to a national Identity Provider (IDP)

Table 18 - getAuthenticationMeans

Operation getAuthattributes

Name getAuthattributes

Description This call returns from the IDP through the authentication proxy the attributes

and validators (e.g. first name, last name, etc.) that are necessary for

authentication. The landing page on the S-EHR App will change based on the

country. This operation is invoked by S-EHR App.

Arguments ● authentication mean

Return Value ● List <Attributes, Validators>

○ returns a distinct set of attributes and regular expression

(regex) validators per action that will be displayed in a form in

S-EHR App.

Exceptions ● Network exceptions

Preconditions ● Citizen has already registered to a national Identity Provider (IDP)

Table 19 - getAuthattributes

Operation get2FAmeans

Name get2FAmeans

Description This call gets the available means of two-factor authentication (2FA) activation

between the citizen and the authentication proxy. This operation is invoked by

S-EHR App.

Arguments ● No arguments

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 25

Return Value List <2FAΜeans>

Exceptions ● Network exceptions

Preconditions ● Citizen has already registered to authentication proxy.

Table 20 - get2FAmeans

Operation authenticate2FA

Name authenticate2FA

Description This call is the 2FA challenge/response against the existing proxy application.

Part of this AuthResponse is the JWT persistence token which is stored in the

authentication proxy. This token is necessary to authenticate the citizen and is

appended to all requests in the system. In every request the token will be re-

evaluated. This operation is invoked by S-EHR App.

Arguments ● challengeBasedOnMeans

Return Value ● AuthResponse

○ JWT token

Exceptions ● Network exceptions

Preconditions ● Citizen has already registered to authentication proxy.

Table 21 - authenticate2FA

 Operation bindUserWith2FA

Name bindUserWith2FA

Description This call binds a specific user with a specific 2FA mean (e.g. SMS, FIDO 2FA,

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 26

hardware-based etc.). This operation is invoked by S-EHR App.

Arguments ● 2FA means

Return Value ● BindingResponse

Exceptions ● Network exceptions

Preconditions ● Citizen has already registered to authentication proxy.

Table 22 - bindUserWith2FA

Operation authenticate

Name Authenticate

Description This call is the actual authentication process. This operation is invoked by S-EHR

App.

Arguments ● challengeBasedOnMeans

Return Value ● AuthResponse

Exceptions ● Network exceptions

Preconditions ● Citizen has already authenticated to the proxy

Table 23 - authenticate

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 27

6. CONCLUSIONS AND NEXT STEPS
The objective of this report was to deliver the initial version of the design of the security libraries offered by

the InteropEHRate Framework as a reference implementation. In the same notion as the other reports of

the InteropEHRate project, this document presents a first draft of the intended content of the security

libraries and their further functionality purposes.

However, it should be mentioned that other two updated versions of this report are planned to be

released. The one is planned to be released on December 2020, whilst the final one is planned to be

released on December 2021, both of them including the relevant updates, of all the security libraries. In the

next version of the Design of libraries for HR security and privacy services, based on the current

implementation, the needs as well as the additional functionalities that will be required, a new version of

the libraries’ design will be released for the intended audience.

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 28

REFERENCES

● [D3.3] InteropEHRate Consortium, Specification of remote and D2D IDM mechanisms for HRs

Interoperability - V1, 2019. www.interopehrate.eu/resources

● [D3.7] InteropEHRate Consortium, Specification of consent management and decentralized

authorization mechanisms for HR Exchange, 2019. www.interopehrate.eu/resources

● [D4.1] InteropEHRate Consortium, Specification of remote and D2D protocol and APIs for HR

exchange - V1, 2019. www.interopehrate.eu/resources

● [epSOS2014] Digital Single Market, Cross-border health project epSOS: What has it achieved?, 2014

Website:https://ec.europa.eu/digital-single-market/en/news/cross-border-health-project-epsos-

what-has-it-achieved

● [eIDAS2014] Digital Single Market, Trust Services and Electronic identification (eID), 20104

Website:https://ec.europa.eu/digital-single-market/en/trust-services-and-eid

● [PKI] Thales, What is Public Key Infrastructure (PKI)?

Website:https://www.thalesesecurity.com/faq/public-key-infrastructure-pki/what-public-key-

infrastructure-pki

● [RFC7519] Internet Engineering Task Force (IETF) , JSON Web Token (JWT), 2015

Website:https://tools.ietf.org/html/rfc7519

● [TREDER2019] Treder, M., Protecting JavaScript Microservices on Node.js with JSON Web Tokens

and Twilio Authy, 2019 Website:https://www.twilio.com/blog/protecting-javascript-microservices-

node-js-json-web-tokens-twilio-authy

● [DS2019] Digital Signatures, What are digital signatures?, 2019

Website:https://www.signinghub.com/digital-signatures/

● [ALDEY2018] Adley, J., Understanding the Role of Certificate Authorities in PKI, 2018,

Website:https://dzone.com/articles/understanding-the-role-of-certificate-authorities

● [THESSLSTORE2019] The Difference Between Root Certificates and Intermediate Certificates, 2019

Website:https://www.thesslstore.com/blog/root-certificates-intermediate/

● [GLOBALPLATFORM2018] GLOBALPLATFORM, Introduction to Trusted Execution Environments,

2018 Website:https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Trusted-

Execution-Environment-15May2018.pdf

● [ANDROID2019] Google, Android keystore system, Website:

https://developer.android.com/training/articles/keystore

● [EJBCA2019] EJBCA Enterprise from PrimeKey, Website:

https://www.primekey.com/products/software/ejbca-enterprise/

● [JCA2018] Oracle, Java Cryptography Architecture (JCA) Reference Guide, 2018. Website:

https://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html

● [ANICAS2014] Anicas, M., Java Keytool Essentials: Working with Java Keystores, 2014

Website:https://www.digitalocean.com/community/tutorials/java-keytool-essentials-working-

with-java-keystores

https://ec.europa.eu/digital-single-market/en/news/cross-border-health-project-epsos-what-has-it-achieved
https://ec.europa.eu/digital-single-market/en/news/cross-border-health-project-epsos-what-has-it-achieved
https://ec.europa.eu/digital-single-market/en/trust-services-and-eid
https://www.thalesesecurity.com/faq/public-key-infrastructure-pki/what-public-key-infrastructure-pki
https://www.thalesesecurity.com/faq/public-key-infrastructure-pki/what-public-key-infrastructure-pki
https://tools.ietf.org/html/rfc7519
https://www.twilio.com/blog/protecting-javascript-microservices-node-js-json-web-tokens-twilio-authy
https://www.twilio.com/blog/protecting-javascript-microservices-node-js-json-web-tokens-twilio-authy
https://www.signinghub.com/digital-signatures/
https://dzone.com/articles/understanding-the-role-of-certificate-authorities
https://www.thesslstore.com/blog/root-certificates-intermediate/
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Trusted-Execution-Environment-15May2018.pdf
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Trusted-Execution-Environment-15May2018.pdf
https://developer.android.com/training/articles/keystore
https://www.primekey.com/products/software/ejbca-enterprise/
https://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html
https://www.digitalocean.com/community/tutorials/java-keytool-essentials-working-with-java-keystores
https://www.digitalocean.com/community/tutorials/java-keytool-essentials-working-with-java-keystores

InteropEHRate deliverable D3.9: Design of libraries for HR security and privacy services - V1

 29

APPENDIX A

This Appendix provides information on how the EJBCA CA and Sub CAs issued the certificates using openssl.

Root CA

Create Root CA key

$ openssl req -new -x509 -sha256 -days 3650 -key (root name).key -reqexts v3_req -extensions v3_ca -

out (root name).crt

Sub CA

Create Sub CA key

$ openssl genrsa -out (sub ca name).key 4096

Create Sub CA request

$ openssl req -new -key (sub ca name).key -reqexts v3_req -extensions v3_ca -out (sub ca name).csr

Sign Intermediate CA request

$ openssl x509 -req -days 730 -in (sub ca name).csr -CA (root name).crt -CAkey (root key).key -set_serial

01 -out (sub ca name).crt

Create CA chain file

$ cat (sub ca name).crt (root name).crt > (chain name).crt

Create p12 file

$ openssl pkcs12 -export -out (name).p12 -inkey (sub ca name).key -in (sub ca name).crt -chain -CAfile

(root name).crt

