

This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 826106.

D2.10

Development and Testing environment

ABSTRACT

The present document describes the integration activities that will be performed for the integration of the

various software components of the InteropEHRate project. The document describes the integration

roadmap that is followed, along with the development tools used. In addition, a summary of the integration

activities that took place during the first year of the project are depicted.

Delivery Date 18th October 2019

Work Package WP2

Task T2.4

Dissemination Level Public

Type of Deliverable Other

Lead partner BYTE

InteropEHRate deliverable D2.10: Development and Testing environment

 ii

InteropEHRate deliverable D2.10: Development and Testing environment

 iii

CONTRIBUTORS

 Name Partner

Contributors Chrysostomos Symvoulidis BYTE

Contributors François Sevrin Andaman7

Contributors Simone Bocca UniTN

Contributors Thanos Kiourtis, Argyro Mavrogiorgou,

Konstantinos Vidakis

UPRC

Contributors Francesco Torelli, Alessio Graziani ENG

Reviewers Salima Houta, Marcel Klötgen FRAU

Reviewers Simone Bocca UNITN

LOG TABLE

Version Date Change Author Partner

0.1 2019-08-02 Provided Table of Contents Chrysostomos

Symvoulidis

BYTE

0.2 2019-08-06 Contribution in Chapters 1 and

2

Chrysostomos

Symvoulidis

BYTE

0.3 2019-08-09 Contribution in Chapters 1, 2

and ANNEX

Chrysostomos

Symvoulidis

BYTE

0.4 2019-09-06 Contribution in Chapter 2 François Sevrin A7

0.5 2019-09-16 Review and contribution to all

sections

Francesco Torelli ENG

0.6 2019-09-17 Changes and contribution

across the document

Dimosthenis Kyriazis UPRC

0.7 2019-10-02 Contribution in Chapter 2 ,

Section 2.2.2

Simone Bocca UniTN

0.8 2019-10-07 Contribution in Chapter 2 Alessio Graziani ENG

0.9 2019-10-08 Provided deliverable for

internal review

Chrysostomos

Symvoulidis

BYTE

1.0 2019-10-09 First internal review Salima Houta, FRAU

InteropEHRate deliverable D2.10: Development and Testing environment

 iv

Marcel Klötgen

1.1 2019-10-09 Second internal review Simone Bocca UNITN

1.2 2019-10-14 Quality review Argyro

Mavrogiorgou

UPRC

1.3 2019-10-16 Final check Laura Pucci ENG

1.4 2019-10-18 Addressed final check

comments

Chrysostomos

Symvoulidis

BYTE

vFinal 2019-10-18 Final version for submission Laura Pucci ENG

InteropEHRate deliverable D2.10: Development and Testing environment

 v

ACRONYMS

Acronym Term and definition

CI Continuous Integration

CD Continuous Delivery / Continuous Deployment

D2D Device to Device protocol

FHIR Fast Healthcare Interoperability Resources

GUI Graphical User Interface

HAPI Health API

HCP Healthcare professional

HDI Health Data Integration

HR Health Record

M-D2D-E Mobile D2D HR Exchange

M-D2D-SM Mobile D2D Security Management

M-R2D-SM Mobile R2D Security Management

R2D Remote to Device protocol

S-HER Smart Electronic Health Record

S-R2D-SM Server R2D Security Management

T-D2D-E Terminal D2D HR exchange

T-D2D-SM Terminal D2D Security Management

T-R2D-SM Terminal R2D Security Management

URL Uniform Resource Locator

VCS Version Control System

WP Work Package

InteropEHRate deliverable D2.10: Development and Testing environment

 vi

TABLE OF CONTENT

1. INTRODUCTION .. 1

1.1. Scope of the document ... 1

1.2. Intended audience .. 1

1.3. Structure of the document .. 1

1.4. Updates with respect to previous version (if any) ... 1

2. INTEGRATION APPROACH AND HARDWARE INFRASTRUCTURE ... 2

2.1. Integration approach .. 2

2.2. Tools and techniques .. 4

2.2.1. Version Control System (VCS) .. 4

2.2.2. Build tools ... 6

2.2.2.1. R2D Protocol .. 6

2.2.2.2. D2D Protocol .. 7

2.2.2.3. S-EHR App .. 7

2.2.2.4. HCP Application ... 8

2.2.2.5. Conversion and Translation tools ... 8

2.2.2.6. Security libraries .. 8

2.2.3. Testing tools.. 9

2.2.3.1. Unit testing .. 9

2.2.3.2. Android UI tests ... 9

2.2.3.3. Browser automation testing .. 9

2.2.3.4. Integration / System testing .. 10

2.2.4. Continuous integration ... 10

2.2.5. Issue tracking .. 10

3. CONCLUSIONS AND NEXT STEPS ... 16

ANNEX: EXAMPLE OF PORTION OF YEAR 1 ROADMAP ... 18

InteropEHRate deliverable D2.10: Development and Testing environment

 vii

LIST OF FIGURES

Figure 1 - Roles and responsibilities .. 4

Figure 2 - GitLab issue tracker .. 11

Figure 3 - “Requirement” labelled issue sample .. 12

Figure 4 - “Task” labelled issue sample .. 12

Figure 5 - A task assigned to a person .. 15

Figure 6 - Requirements of the first year .. 19

Figure 7 - ‘D2D device pairing’ requirement in GitLab .. 22

Figure 8 - Tasks of the ‘D2D device pairing’ requirement not yet placed in sprints .. 23

LIST OF TABLES

Table 1 - Macro-component labels ... 13

Table 2 - Components labels ... 15

Table 3- ‘D2D device pairing’ requirement’s associated tasks .. 21

InteropEHRate deliverable D2.10: Development and Testing environment

 1

1. INTRODUCTION

1.1. Scope of the document
The current document presents the development and integration steps currently planned by the technical

partners of the InteropEHRate Consortium, in order to produce the InteropEHRate platform. This

deliverable is focused mainly on the description of the development and integration approach that is put in

place and followed in the project. The deliverable is described as “Other” because the main delivery points

regard the usage of the software repositories provided in the project’s git.

1.2. Intended audience
This document is mainly intended for InteropEHRate developers, since it describes the tools and

technologies used for the implementation of the various components, along with the integration roadmap

agreed by the technical partners in order to realise the integrated InteropEHRate platform.

1.3. Structure of the document
This document is structured as follows:

● Section 1 (this section) describes the goals and structure of the document, and its relation to other

reports.

● Section 2 “Integration approach and Hardware infrastructure” provides a description of the

approach that is followed regarding the development of the software components of the

InteropEHRate platform, including the tools used for this process as well.

● Section 3 “Integration plan” depicts the roadmap that is going to be followed throughout the

project in terms of integration efforts and planning.

● “Conclusions and next steps” wraps up this deliverable and presents the next steps that are going

to be followed.

● The Annex “First year integration roadmap” presents in a more concrete way how the development

and integration steps that are described in the previous chapters are realized during the first year

of the project, with references to the project’s Gitlab.

1.4. Updates with respect to previous version (if any)
This document describes the development and integration approach of InteropEHRate and the currently

planned steps towards the implementation of the overall integrated InteropEHRate platform. According to

the described approach as presented in [D2.4], future updates of the planned steps and their status of

advancement will be reported on the project issue tracker (as introduced in Section 2.2.5). Details on the

implementation of the different components and the planned steps will be documented in the

corresponding deliverables of the project.

InteropEHRate deliverable D2.10: Development and Testing environment

 2

2. INTEGRATION APPROACH AND HARDWARE INFRASTRUCTURE

2.1. Integration approach
This chapter describes the approach that has been agreed by the technical members of the consortium of

the InteropEHRate project, for the development and integration of the components towards the overall

InteropEHRate platform. The agreed process for development and integration is described below, while the

adopted tools are described in the next sections.

As described in deliverable [D2.1], the starting point of the InteropEHRate development process is a set of

user scenarios mainly defined by the final users. Starting from these scenarios, the technical partners agree

with the final users on a set of user requirements (implied from the defined scenarios) and on their priority.

Each year, the technical partners review the user requirements and on the base of user priorities and

technical constraints they plan the user requirements to be addressed during the year. Each user

requirement targets the behaviour of a single user application or service with respect to a particular

behaviour offered to the final user, as described in deliverable [D2.1].

During the integration and development planning the user requirements are further divided into more

granular elements called “functionalities” and “tasks”. A functionality is a fine-grained behaviour or

operation offered by a single software component, to be consumed by other components (in this case the

functionality may by a method of a library) or by the final user (in this case a functionality may be a portion

of offered GUI and related behaviour). Typically each user requirement requires the implementation of

several functionalities.

While a user requirement may require one or more years of work to be fully implemented, a functionality

may be implemented in a few months of development. A task is a development activity that is needed in

order to implement a functionality or a requirement. A task may deliver a functionality or a portion of it. A

task should be sufficiently fine grained to be implemented within a maximum period of 2 weeks, called

sprint according to agile methodologies [Scrum]. The sprints are a short period of time, all having the same

duration, where the development and integration team focuses on completing a set of work items, similar

to the sprints in the agile development methodology. The sprints in the InteropEHRate project have

duration of two weeks.

However, apart from these similarities, the InteropEHRate development process cannot be considered an

agile process, but just an iterative process where requirements and development tasks are reviewed

periodically.

At the beginning of each sprint the developers meet to plan the tasks to be performed to progress the

realization of a specific sprint. First of all, the results of the previous sprint are reviewed to confirm their

completion. If any task has not been completed yet, it is moved to the new starting sprint or further

analysed to understand if it needs to be further split.

The meaning of requirements is also reviewed during this planning phases and if needed further

clarifications are asked to the lead of the requirements. On the base of these clarifications and of technical

InteropEHRate deliverable D2.10: Development and Testing environment

 3

opportunities, the tasks for the new sprint are then fixed. During the following weeks the advance of the

agreed tasks is then monitored.

In order to make sure the development process is followed, the project is divided into several Work

Packages (WP) that under them, a main goal of the project is set to be fulfilled. Each WP is assigned to a

project partner whose responsibility is to coordinate the design and implementation activities within that

WP. Consequently, each WP is further divided into Tasks, which is assigned to a project partner as well

whose responsibility is the design and implementation of a defined part of the overall WP goal.

In order to clarify the responsibilities, each user requirement is assigned to a technical lead. The technical

lead associated to a requirement is accountable for the planning of the features and tasks needed for the

implementation of that requirement. While this planning is fixed on a sprint by sprint basis, it is

recommended that the technical lead of a requirement prepares a draft global plan specifying the tasks to

be implemented in future sprints in order to complete the implementation of the requirement. It is up to

the technical lead to decide if to split the requirement in different features.

Each task is assigned to a technical lead, i.e. the person responsible for the completion of the task by the

requirement leader. The technical lead of a task is also responsible for reporting the status of the task to its

requirement leader who is responsible for monitoring the progress of the implementation of the full

requirement and to solve integration issues related to that requirement. The lead of integration and

development is responsible to assure that the entire integration and development process is correctly

understood and executed and that any needed improved to the process is agreed and applied when

necessary.

The above-mentioned plan is managed through a GitLab issue tracker (described in Section 2.2.5). As all

planning and reporting is managed through the project’s issue tracker, it is clear that it is not just a bug

tracking tool, but a system responsible to supervise the overall procedure. For the time-being the access is

limited to the consortium partners.

The structure of the development and integration approach of InteropEHRate is graphically depicted in

Figure 1 below:

InteropEHRate deliverable D2.10: Development and Testing environment

 4

Figure 1 - Roles and responsibilities

Another important notice is that the roadmap (i.e. the plan of which requirements will be targeted and of

which tasks will be implemented during each year, sprint by sprint) is updated continuously. The target of

each year has been set, but adjustments according to the progress may exist. More specifically, the first

year is mainly focused on the first scenario (Device to Device HR exchange), the second year will be focused

on the second scenario (Remote to Device HR exchange), while the third year is focused on the third

scenario (Research protocol). But this does not mean that once a year is over, the corresponding scenario is

complete. On the contrary, throughout the project all three scenarios will constantly be updated.

In addition, although it is not strictly part of the implementation process, it is important to note that a focus

group consisting of representatives of the final users (i.e. patients, nurses, medical doctors and

researchers) is set in order to increase the user satisfaction, through the co-design of the GUIs and the

functionalities of the InteropEHRate framework.

For better understanding of the integration approach, in the Annex the integration roadmap of the first

year is shown.

2.2. Tools and techniques
This chapter describes the tools and the techniques used for the development of the components of the

InteropEHRate platform.

2.2.1. Version Control System (VCS)

The consortium has selected GitLab as the main Version Control System (VCS). A private deployment has

been concluded during the first year of the project on UPRC premises, and the corresponding URL to the

InteropEHRate GitLab instance is the following: http://iehrgitlab.ds.unipi.gr/.

A private “InteropEHRate” group in this GitLab is created which is organized into several sub-groups. Each

sub-group regards a macro-component as also presented in the architecture deliverable [D2.4]. Under each

group a project that regards a component is created. More specifically the structure of the “InteropEHRate”

group is presented below:

http://iehrgitlab.ds.unipi.gr/

InteropEHRate deliverable D2.10: Development and Testing environment

 5

● Health tools

○ Data mapping tool

○ Knowledge management tool

● InteropEHRate Research Services

○ Server Research Data Sharing

○ Server Encrypted communication

● InteropEHRate Health Services

○ Machine Translation

○ Label Translation

○ FHIR Export

○ FHIR Import

○ Information Extraction and Data Formalization

○ FHIR Data Mapping

○ Legacy Data import

○ S-EHR Localisation platform

○ S-EHR Integration platform

○ HR Data Index

○ Server R2D HR Exchange

○ Server Encrypted communication

○ R2D Security management

● Reference HCP app

○ HCP App

○ Terminal R2D Security Management

○ Terminal D2D Security Management

○ Terminal Encrypted Communication

○ Terminal R2D HR Exchange

○ Terminal D2D HR Exchange

● S-EHR Cloud

● S-EHR Message Broker

● S-EHR Mobile app

○ S-EHR app

○ R2D Security Management

○ D2D Security Management

○ Encrypted Storage

○ Encrypted Communication

○ R2D HR Exchange

○ D2D HR Exchange

○ Research Data Sharing

○ Anonymization and Aggregation

● Interoperability profile

In addition, two more projects are created in order to facilitate on the organization of the development

phase: the “issues” project, which is the main project used for the management of the integration and

InteropEHRate deliverable D2.10: Development and Testing environment

 6

implementation roadmap agreed among all developers and the “Website activities”, which is used for

tracking down the activities related to the implementation of the project’s website. The “issues” project

will be further described in Section 2.2.6.

The developer’s team have set a list of ground rules that need to be followed in order to have a

homogenized result, with respect to the implementation that are also documented in the ‘issues’ task of

the gitlab’s server. These rules include:

● The structure of the code repositories

○ It has been agreed that the overall structure of every repository should be the same for

homogeneity reasons.

● The naming of the of the packages and the interfaces of each developed component

○ All the components developed for the InteropEHRate project should be placed under a

certain package.

● The branches in each repository

○ A “develop” branch is used for the development, where a “master” branch is used for the

official releases of the components of the InteropEHRate platform.

2.2.2. Build tools

This chapter presents the tools that are used or will be used throughout the project for the development

and integration of the various components. For each component, an exhaustive list of the tools is provided.

2.2.2.1. R2D Protocol

The R2D library for mobile is implemented using the Java programming language and is compatible with the

Android operating system. The list of tools used for development contains the following:

● Android Studio 3.4.2;

● Android emulator;

● Android compatible smartphone;

● JUnit for unit testing;

● Gradle and Maven (Nexus) for dependency management.

The R2D server is implemented as a Java application built to run as a Java web application hosted inside a

web container. The list of tools used for development includes:

● Eclipse 2019 (application is developed using standard project configuration as defined by Maven

and adopted by several IDEs);

● JUnit for testing;

● Maven for dependency management;

● Tomcat as web container and HTTP server;

● Derby as database;

● Jenkins for continuous integration;

InteropEHRate deliverable D2.10: Development and Testing environment

 7

2.2.2.2. D2D Protocol

The D2D protocol specifies a series of specified bluetooth messages regarding the information that is being

exchanged and healthcare related data between a healthcare practitioner (utilizing a web application (HCP

app)) and a citizen (utilizing a mobile application (S-EHR app)), without the usage of internet connection.

In order for the HCP app to use the D2D protocol, the Terminal D2D Exchange (T-D2D-E) component is

implemented as a Java library. In more detail, the T-D2D-E is a Maven [Apache Maven] project following the

standard maven structure. The pom.xml file contains information about the project and configuration

details used by Maven to build the project, containing default values such as the build directory.

● For the development of the T-D2D-E component, Java is currently used as the main programming

language.

● For the development and testing of the T-D2D-E component, the Netbeans IDE is used.

● For achieving the Bluetooth connection, as well as the data exchange process, the BlueCove Java

library is being used, provided as a Maven dependency in the pom.xml file of the project.

● For the transfer of data (i.e. FHIR Objects), the HAPI-FHIR [HAPI FHIR] library is being used, provided

as a Maven dependency in the pom.xml file of the project.

In order for the S-EHR app to use the D2D protocol,the Mobile D2D HR Exchange (M-D2D-E) component is

implemented as an Android Java library. In more detail, the M-D2D-E is a Gradle [Gradle] project following

the standard Gradle structure. The Gradle file contains information about the project and configuration

details used by Gradle to build the project, containing default values such as the build directory.

● For the development of the M-D2D-E component, Java for Android is currently used as a

programming language.

● For the development and testing of the M-D2D-E component, the Android Studio IDE is used.

● For the transfer of data (i.e. FHIR Objects), the HAPI-FHIR library is being used, provided as a Gradle

dependency in the Gradle file of the project.

2.2.2.3. S-EHR App

The InteropEHRate S-EHR App is embedded in the current Andaman7 app as a module.

● The S-EHR App is written in Java for Android.

● For the development of the S-EHR module, Kotlin for Android [Kotlin-Android] is currently used as

the programming language.

● For the development and testing of the S-EHR app the Android Studio IDE is also used.

● For dependency injection Dagger2 [Dagger] framework is being used, provided as a Gradle

dependency in the Gradle file of the project.

● The database is managed using Realm Framework for Android [Realm], provided as a Gradle

dependency in the Gradle file of the project.

● For the retrieval of the data, the HAPI library is being used, provided as a Gradle dependency in the

Gradle file of the project.

InteropEHRate deliverable D2.10: Development and Testing environment

 8

2.2.2.4. HCP Application

The HCP application is designed to run on the Java Virtual Machine being developed using Java and Kotlin

programming languages having Spring as framework for development. The list of tools used for

development and integration is:

● Maven for build automation;

● JUnit for unit testing;

● Selenium for automated testing, HCP being a web application;

● There is no close dependency on a certain Integrated Development Environment. Depending on the

preferences of the developers can be used: Intellij IDEA, Eclipse or Spring STS;

● Jenkins for continuous integration;

● Nexus for dependency management.

2.2.2.5. Conversion and Translation tools

The conversion and translation tools rely on an innovative knowledge-based data integration platform,

shown as Health Data Integration (HDI) Platform. This allows the conversion of local EHR formats to the

interoperable S-EHR representation and of their translation into multiple European languages.

The HDI platform, developed in Java using Spring framework and Hibernate, uses different tools, called

InteropEHRate Health Tools (IHT) for the conversion and translation process.

● Data Mapping Tool: Developed in Java, it allows the conversion of data between different formats.

It allows also to write short Python scripts to manage the data conversions.

● Knowledge Management Tool: Developed in JavaScript - CoffeeScript [CoffeeScript], allows the

management of the knowledge of data. This tool provides all the operations needed for

importation, definition and description of the knowledge of data.

The database used by the HDI platform is managed using PostgreSQL [PostgreSQL], while another database

in support to the Knowledge Management Tool is managed through MongoDB [MongoDB].

Inside the HDI platform the different libraries and software components are used as Maven dependencies

included in the pom file of projects.

2.2.2.6. Security libraries

In order for the D2D and R2D protocols to be secure, the Terminal D2D Security Management (T-D2D-SM),

Mobile D2D Security Management (M-D2D-SM), Terminal R2D Security Management (T-R2D-SM) and

Server R2D Security Management (S-R2D-SM) components are implemented as a Java libraries.

The T-D2D-SM, T-R2D-SM and S-R2D-SM are Maven projects following the standard maven structure. The

pom.xml file contains information about the project and configuration details used by Maven to build the

project, containing default values such as the build directory.

● For the development of the components, Java is used as a programming language.

● For the development and testing of the components IntelliJ IDEA IDE [IntelliJ IDEA] is used.

InteropEHRate deliverable D2.10: Development and Testing environment

 9

● For cryptographic functions java.security and javax.crypto Packages are being used.

The M-D2D-SM and M-R2D-SM are a Gradle projects following the standard Gradle structure. The Gradle

file contains information about the project and configuration details used by Gradle to build the project,

containing default values such as the build directory.

● For the development of the components, Java for Android is currently used as a programming

language.

● For the development and testing of the component Android Studio IDE is used.

● For cryptographic functions java.security and javax.crypto Packages are being used.

2.2.3. Testing tools

 InteropEHRate regards a project that various technologies and frameworks co-exist. In order to make sure

that the produced software works according to plan several tests are executed. These include unit tests,

Android UI tests, Automation tests and integration tests.

The tests on component level (unit tests, Android UI tests, browser automation tests) should be written

and executed by the leading developer of the corresponding software and are configured to be executed

after a push or commit in the master branch using the GitLab Runners [GitLab Runner]. When it comes to

integration tests, these should be written by the leading developers of the software mechanisms to be

integrated.

Each one of these tests and the tools used for them are explained in detail in the chapters below.

2.2.3.1. Unit testing

Unit testing regards the software tests that investigates whether a developed components behaves the way

it is supposed to. Unit testing is a very important step, since it should be performed before the integration

of the component with the rest of the InteropEHRate platform. The responsible for running these tests is

the developer or the team responsible for the implementation of a component. Most of the developed

applications are written in Java, hence JUnit [JUnit] has been chosen as the main tool for Unit testing.

2.2.3.2. Android UI tests

With Android UI tests, the developer can ensure that the functional requirements of developed application

are met. This type of test tests the user interactions with the application, and is used to identify unexpected

behavior that may lead to a poor user experience. For this reason, Espresso [Espresso] has been agreed on

using as the primary Android UI testing tool.

2.2.3.3. Browser automation testing

The software applications in the InteropEHRate project are/will be written as web applications. For this

reason, tests that will assess the interaction and responsiveness of the application with the user is

InteropEHRate deliverable D2.10: Development and Testing environment

 10

necessary. Thus, Selenium [Selenium] has been selected as the automation testing tool used for such

applications, like the reference HCP app.

2.2.3.4. Integration / System testing

This type of test is used to ensure that the individually developed components of the InteropEHRate

platform work well in combination. Integration tests can expose bugs in the interfaces and in the

interaction between integrated components and / or systems. Similarly, system tests will also be written for

cases where developed components of the InteropEHRate platform communicate with external services

(e.g. Healthcare Organization Information Systems).

2.2.4. Continuous integration

The deployment of the InteropEHRate platform is based on a Continuous Integration (CI) process.

Continuous Integration regards the software engineering practice, with which the developed software can

be released on any occasion, through the production of code in fixed time periods. Continuous Integration

is considered to be a best practise for the automation of software integration, and is comprised of a set of

techniques that ensure the quality of the deployed product. With Continuous Integration, errors can be

identified rapidly and integration issues are minimized.

The Continuous Integration approach in the InteropEHRate project starts with committing the code to

GitLab. The code is then built automatically using Jenkins [Jenkins]. Once the build is complete, a set of

automated unit tests, which are under the responsibility of each component’s developer, are triggered. If

the tests are successful the code is pushed to the master branch, which in our case represents the

versioning branch.

2.2.5. Issue tracking

As already mentioned, GitLab issue tracker is the toolset that the InteropEHRate project uses. It is located

in the private “InteropEHRate” group of GitLab as described in Section 2.2.1. A screenshot of the issue

tracker is depicted in Figure 2:

InteropEHRate deliverable D2.10: Development and Testing environment

 11

Figure 2 - GitLab issue tracker

In order to better manage the issues, a list of labels is created and used to categorize the issues. These

labels include:

● The “Requirement” label: An issue tagged as “requirement” represents a user requirement that

needs to be implemented. In the description of each requirement the corresponding Tasks that

form it are presented, divided into their corresponding sprints. A checked task in the description of

a requirement, suggests that it is complete. An example “Requirement” is presented in Figure 3:

InteropEHRate deliverable D2.10: Development and Testing environment

 12

Figure 3 - “Requirement” labelled issue sample

● The “Task” label: A task refers to a work item that a specific developer should complete within a

single sprint. Several tasks together implement a requirement. The tasks are the granular units that

are developed in sprints. A task is associated with one requirement only. A sample “Task” labeled

issue is presented in Figure 4:

Figure 4 - “Task” labelled issue sample

InteropEHRate deliverable D2.10: Development and Testing environment

 13

● Macro-components labels: This type of label is used to associate a requirement and its

corresponding tasks to the analogous macro-component. Each macro-component realizes one or

more user requirements. Each user requirement is offered by a single macro-component. A macro-

component may be composed of different nested components not directly associated to user

requirements. Macro-components and nested components are described in deliverable [D2.4]. The

table below depicts the list of macro-component labels:

Macro-component

label
Description

HCP-A Reference HCP App

IEHR-P InteropEHRate Profile

IHR InteropEHRate Research Services

HIS InteropEHRate Health Services

IHT InteropEHRate Health Tools

S-EHR-A S-EHR Mobile App

S-EHR-B S-EHR Message Broker

S-EHR-C S-EHR Cloud

Table 1 - Macro-component labels

● Components labels: This type of label is used to associate an issue (Requirement or Issue) with the

corresponding nested component. Table 2 presents the components labels and the label of their

parent macro-component.

Component label Description Macro-component label

M-R2D-SM Mobile R2D Security Management

S-EHR-A

M-D2D-SM
Mobile D2D Security Management

MES
Mobile Encrypted Storage

MEC
Mobile Encrypted Communication

M-R2D-E
Mobile R2D HR Exchange

InteropEHRate deliverable D2.10: Development and Testing environment

 14

M-D2D-E
Mobile D2D HR Exchange

M-RS
Mobile Research Data Sharing

M-AA
Mobile Anonymization and Aggregation

SEC
Server Encrypted Communication

IRS
S-RS

Server Research Data Sharing

T-KM
Knowledge Management Tool

IHT
T-DM

Data Mapping Tool

S-R2D-SM Server R2D Security Management

IHS

SEC
Server Encrypted Communication

S-R2D-E
Server R2D HR Exchange

HRDI
HR Data Index

S-IP
S-EHR Integration Platform

S-LP
S-EHR Localisation Platform

S-LDI
Legacy data import

S-DM
FHIR Data Mapping

S-IE Information Extraction and Data
Formalisation

S-EX
FHIR Export

S-IM
FHIR Import

S-LT
Label Translation

HCP
HCP App

HCP-A

T-R2D-SM
Terminal R2D Security Management

T-D2D-SM
Terminal D2D Security Management

TEC
Terminal Encrypted Communication

T-R2D-E
Terminal R2D HR Exchange

T-D2D-E
Terminal D2D HR Exchange

S-EHR-B
S-EHR Message Broker S-EHR-B

InteropEHRate deliverable D2.10: Development and Testing environment

 15

S-EHR-C
S-EHR Cloud S-EHR-C

Table 2 - Components labels

Note that some macro-components, including the S-EHR Cloud and the S-EHR Message Broker do not have

any nested components constituting them. In such cases, only macro-component labels exist.

Finally, each task is assigned to a person (i.e. a developer responsible to undertake it) and tagged with the

sprint where it needs to be implemented. If a task is undertaken by more than one person, the assignee is

the main contributor, that is considered accountable for the completion, where the others are placed as

participants. In the figure below, a sample task with the person in charge is depicted, along with the sprint

where this task should be finished.

Figure 5 - A task assigned to a person

InteropEHRate deliverable D2.10: Development and Testing environment

 16

3. CONCLUSIONS AND NEXT STEPS

This document presented the development and integration roadmap of the InteropEHRate project, as it is

agreed by the technical partners of the Consortium. It described the tools and techniques used / will be

used throughout the project in order to deliver the integrated InteropEHRate platform.

Additionally, the work that has been done towards that direction in the first year of the InteropEHRate

project is also presented in the Annex to this deliverable. Though this will be the only deliverable depicting

the work done in the Development and Integration task, its outcomes will be provided through the

development-related deliverables of the project.

InteropEHRate deliverable D2.10: Development and Testing environment

 17

REFERENCES

● [Apache Maven] Apache Maven. Website: https://maven.apache.org/

● [CoffeeScript] CoffeeScript. Website: https://coffeescript.org/

● [Dagger] Dagger. Website: https://dagger.dev

● [D2.1] InteropEHRate Consortium, User Requirements for cross-border HR integration - V1, 2019.

www.interopehrate.eu/resources

● [D2.4] InteropEHRate Consortium, InteropEHRate Architecture - V1, 2019.

www.interopehrate.eu/resources

● [Espresso] Espresso Android UI tests. Website:

https://developer.android.com/training/testing/espresso

● [Gradle] Gradle Build Tool. Website: https://gradle.org/

● [GitLab Runner] Configuring GitLab Runners. Website: https://docs.gitlab.com/ee/ci/runners/

● [HAPI FHIR] HAPI FHIR. Website: https://hapifhir.io/

● [IntelliJ IDEA] IntelliJ IDEA. Website: https://www.jetbrains.com/idea/

● [Issue tracker] InteropEHRate issues. Website:

http://iehrgitlab.ds.unipi.gr/interopehrate/issues/issues

● [Jenkins] Jenkins. Website: https://jenkins.io/

● [JUnit] JUnit 5. Website: https://junit.org/junit5/

● [Kotlin-Android] Kotlin and Android. Website: https://developer.android.com/kotlin/

● [MongoDB] MongoDB. Website: https://www.mongodb.com/

● [PostgreSQL] PostgreSQL. Website: https://www.postgresql.org/

● [Realm] Realm: Create reactive mobile apps in a fraction of the time. Website: https://realm.io/

● [Scrum] Scrum. Website: https://www.scrum.org

● [Selenium] Selenium - Web Browser Automation. Website: https://www.seleniumhq.org/

https://maven.apache.org/
https://coffeescript.org/
https://dagger.dev/
http://www.interopehrate.eu/resources
http://www.interopehrate.eu/resources
https://developer.android.com/training/testing/espresso
https://gradle.org/
https://docs.gitlab.com/ee/ci/runners/
https://hapifhir.io/
https://www.jetbrains.com/idea/
http://iehrgitlab.ds.unipi.gr/interopehrate/issues/issues
https://jenkins.io/
https://junit.org/junit5/
https://developer.android.com/kotlin/
https://www.mongodb.com/
https://www.postgresql.org/
https://realm.io/
https://www.scrum.org/
https://www.seleniumhq.org/

InteropEHRate deliverable D2.10: Development and Testing environment

 18

ANNEX: EXAMPLE OF PORTION OF YEAR 1 ROADMAP

This Annex depicts a portion of the integration roadmap that took place during the first year of the

InteropEHRate project. It is used to showcase how the technical partners collaborated and how the work

proceeded in order to have a complete integrated InteropEHRate platform.

As already declared, the roadmap in the InteropEHRate project is in fact a multilevel concept. The

procedure starts with the identification of the user requirements as these are extracted by the Use Cases.

In our case, the user requirements were derived from the first scenario as it is described in the

corresponding deliverable [D2.1]. These roll down to a more granular concept; the features that basically

regard the functionalities a software provides to its end user. These features are finally translated into the

tasks that need to be developed by the technical partners. An important note at this point is that the

features are not the same thing as the tasks. In fact, a feature may need more than one tasks to be

implemented in order to be considered as completed.

In order to minimize the confusion with multi-labeled issues, it is agreed that only the requirements and the

tasks are labeled in the GitLab issue tracker. The list of the requirements to be implemented during the first

year of the project can be seen on the issue tracker easily by filtering the search engine to show only the

issues that are labeled as ‘Requirement’. These are presented in Figure 6 below:

InteropEHRate deliverable D2.10: Development and Testing environment

 19

Figure 6 - Requirements of the first year

As depicted in Figure 6, each requirement has an assignee which regard the requirement leader. Also, in

case a requirement is complete, it is highlighted.

In order to demonstrate the integration roadmap of InteropEHRate, a user requirement is chosen to be

presented. Thus, the ‘D2D device pairing’ requirement is selected. What is going to be presented in this

annex is:

● The way a user requirement is presented in the GitLab issue tracker

● How it is split into several tasks

● How these tasks are managed and placed into Sprints, and

● What are the key roles of the partners in the development of the requirement

As we mentioned above, the requirement that will showcase the integration roadmap of InteropEHRate for

its first year is called ‘D2D device pairing’. Upon the completion of this requirement, the two core

components of InteropEHRate for the first scenario (i.e. the S-EHR mobile app and the HCP app) should be

paired.

InteropEHRate deliverable D2.10: Development and Testing environment

 20

The identified tasks needed for the completion of this requirement are the ones presented in the table

below:

D2D device pairing

Sprint
Task name

Sprint 1

Create a simple method for the HCP app to set the Health Organization Details

Create a simple method for the S-EHR app to get the Health Organization Details

Sprint 2 Implement the functionality for exchanging a simple message from the S-EHR app to the
HCP app

Sprint 3 Implement the functionality for exchanging a simple message from the HCP app to the S-
EHR app

Sprint 4 Update bug fixes in the exchange of simple message between the S-EHR app and the HCP
app

Sprint 6

Implement the functionality of transferring Healthcare Organization Details

Interface for sending Healthcare Organization details

Interface for retrieving Healthcare Organization details

Sprint 7

QR code for Bluetooth connection

Implement the functionality of transferring Personal Data

Interface for sending Personal Data

Interface for retrieving Personal Data

Sprint 8
Integration demo test

Sprint 9

Implement the functionality of transferring portion of patient summary

Interface for retrieving portion of Patient Summary

Interface for sending portion of Patient Summary

Sprint 11
Define listener for S-EHR app upon receiving organization data

Sprint 12 Implement the listener for S-EHR App upon receiving organization data

InteropEHRate deliverable D2.10: Development and Testing environment

 21

Define listener for HCP App upon receiving demographic data

Implement the listener for HCP App upon receiving demographic data

Sprint 13

Define listener for S-EHR App upon receiving Evaluation Data

Define listener for HCP App upon receiving patient summary

Unknown
sprint
for the
time
being

Provide HCP identity certificate to the S-EHR app

Update the QR code including the digital signed organization info

Provide method for signing organization info - HCP App

Expose API for signing organization info - HCP App

Place the signed organization info in the QR code

Provide method for verifying organization info - S-EHR App

Expose API for verifying organization info - S-EHR App

Integrate the API regarding the verified organization info with the S-EHR App

Define listener for S-EHR App upon requesting patient summary

Define listener for S-EHR App upon receiving consent and requesting consent answer

Define listener for HCP App upon requesting evaluation data

Fix closeConnection method from the S-EHR App side

Define listener for HCP App and S-EHR App upon closing the connection

Define interface for HCP App that will have all the required listeners

Define interface for S-EHR App that will have all the required listeners

Table 3- ‘D2D device pairing’ requirement’s associated tasks

In the figure below you should see how these tasks are shown in the description of the requirement:

InteropEHRate deliverable D2.10: Development and Testing environment

 22

Figure 7 - ‘D2D device pairing’ requirement in GitLab

As you can see, all the tasks are linked to the requirement with their ID. When a task is complete the

requirement leader should make sure to check the checkbox of the corresponding task in order to close it.

As already mentioned, all the tasks needed for the completion of each requirement should be identified

prior to the start of the development. But for some tasks the sprint may not be easy to address. Such tasks

are also presented in the description of the requirement with a minor difference; They are placed under a

‘?’ sprint for the moment and the requirement leader indicates the task leader by writing their name in the

end of the task next to the task name, until the exact sprint of implementation is identified. This is depicted

in Figure 8.

InteropEHRate deliverable D2.10: Development and Testing environment

 23

Figure 8 - Tasks of the ‘D2D device pairing’ requirement not yet placed in sprints

Moving on to the tasks, each task is also assigned to a task leader, similar to the way a requirement is

assigned to a requirement leader.

