

 InteropEHRate project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement No 826106.

.

D4.4

Design of libraries for remote and D2D HR exchange

- V1

ABSTRACT

This deliverable describes the initial version of the design of the libraries offered by the InteropEHRate

Framework as a reference implementation of the device-to-device (D2D) and the remote-to-device (R2D)

health record exchange protocols. A detailed description is being provided for these two libraries, including

their interactions with the involved applications, in terms of how the libraries can be used by any S-EHR

app, HCP App, as well as by any NCP app, regarding the specified D2D and R2D protocols. The current

deliverable is intended for developers and manufacturers that are interested in designing and building

either mobile or web applications that aim at exploiting and reusing either the D2D or the R2D or both of

these two functionalities offered by the InteropEHRate framework, in the context of their applications.

Delivery Date October 31st 2019

Work Package WP4

Task T4.2

Dissemination Level Public

Type of Deliverable Report

Lead partner UPRC

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 iii

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 iv

CONTRIBUTORS

 Name Partner

Contributors Thanos Kiourtis, Argyro Mavrogiorgou UPRC

Contributors Francesco Torelli, Alessio Graziani ENG

Reviewers Chrysostomos Symvoulidis BYTE

Reviewers Nicu Jalba SIVECO

LOGTABLE

Version Date Change Author Partner

0.1 2019-08-23 Provided Initial ToC Thanos Kiourtis,

Argyro

Mavrogiorgou

UPRC

0.2 2019-09-13 Updated ToC and text, based

on internal review.

Thanos Kiourtis,

Argyro

Mavrogiorgou,

Francesco Torelli,

Alessio Graziani

UPRC, ENG

0.3 2019-09-23 Provided input regarding the

D2D libraries for both sides

Thanos Kiourtis,

Argyro

Mavrogiorgou,

Dimitris Laliotis,

Konstantinos Vidakis

UPRC

0.4 2019-09-30 Updated Abstract Section,

Conclusions Section,

References and Proofread

Section 1 and Section 2.

Thanos Kiourtis,

Argyro

Mavrogiorgou,

Konstantinos Vidakis

UPRC

0.5 2019-11-10 Provided input regarding the

R2D libraries and the D2D and

R2D Data Model.

Thanos Kiourtis,

Argyro

Mavrogiorgou,

Konstantinos

Vidakis, Alessio

Graziani

UPRC, ENG

0.6 2019-11-20 Finalized input, proof-read and

sent for internal review

Thanos Kiourtis,

Argyro

Mavrogiorgou,

UPRC, ENG

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 v

Konstantinos

Vidakis, Alessio

Graziani

0.7 2019-10-22 Internal review Chrysostomos

Symvoulidis

BYTE

0.8 2019-10-23 Internal review Nicu Jalba SIVECO

0.9 2019-10-24 Updates based on internal

review

Thanos Kiourtis,

Argyro

Mavrogiorgou,

Konstantinos

Vidakis, Alessio

Graziani

UPRC, ENG

1.0 2019-10-29 Quality Review Thanos Kiourtis,

Argyro

Mavrogiorgou,

Konstantinos

Vidakis, Alessio

Graziani

UPRC, ENG

VFinal 2019-10-31 Final review and version for

submission

Laura Pucci ENG

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 vi

ACRONYMS

Acronym Term and definition

D2D Device-to-Device

R2D Remote-to-Device

HER Electronic Health Record

S-HER Smart Electronic Health Record

MD2D Mobile Device-to-Device

TD2D Terminal Device-to-Device

MD2DI Mobile Device-to-Device Interface

TD2DI Terminal Device-to-Device Interface

M-D2D-E Mobile Device-to-Device Exchange

M-R2D-E Mobile Remote-to-Device Exchange

M-R2D-SM Mobile Remote-to-Device Security

T-D2D-E Terminal Device-to-Device Exchange

HCO Healthcare Organization

CEF Connecting Europe Facility

eHDSI eHealth Digital Service Infrastructure

NCP National Contact Point

API Application Programming Interface

FHIR Fast Healthcare Interoperability Resources

UML Unified Modeling Language

SQL Structured Query Language

R2DI Remote-to-Device Interface

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 vii

TABLE OF CONTENT

1. INTRODUCTION 1

1.1. Scope of the document 1

1.2. Intended audience 1

1.3. Structure of the document 1

1.4. Updated with respect to previous version (if any) 2

2. Design of the D2D Libraries 3

2.1. D2D Libraries 3

2.1.1. S-EHR-side D2D library 4

2.1.1.1. Components 4

2.1.1.2. Public Interfaces 4

2.1.1.3. Example of usage of M-D2D-E 11

2.1.1.4. Third Party Libraries 12

2.1.2. HCP-side D2D library 14

2.1.2.1. Components 14

2.1.2.2. Public Interfaces 14

2.1.2.3. Example of usage of T-D2D-E 22

2.1.2.4. Third Party Libraries 23

3. Design of the R2D Library for mobile 25

3.1. R2D Library 25

3.1.1. R2D Library External view 25

3.1.1.1. Components 25

3.1.1.2. Public Interfaces 27

3.1.1.3. Example of usage of M-R2D-E 32

3.1.1.4. Third Party Libraries 34

3.1.2. R2D Library Internal view 35

3.1.2.1. MR2DOverFHIR 42

3.1.2.2. MR2DOverEHDSI 46

4. D2D and R2D Data Model 50

5. CONCLUSIONS AND NEXT STEPS 53

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 viii

LIST OF FIGURES
Figure 1 - D2D protocol interfaces 9

Figure 2 - M-D2D-E Public Java Components 10

Figure 3 - M-D2D-E Public Java Components Interfaces 11

Figure 4 - Example of retrieving the Health Organization Identity 17

Figure 5 - M-D2D-E Third Party Libraries 19

Figure 6 - T-D2D-E Public Java Components 20

Figure 7 - T-D2D-E Public Java Components Interfaces 21

Figure 8 - Example of retrieving the Patient Summary 28

Figure 9 - T-D2D-E Third Party Libraries 30

Figure 10 - M-R2D-E component diagram 32

Figure 11 - M-R2D-E main interfaces 33

Figure 12 - Sequence diagram for getAllRecords() 39

Figure 13 - Component diagram of M-R2D-E 41

Figure 14 - Class diagram of M-R2D-E library 42

Figure 15 - Sequence diagram of the factory method create() 43

Figure 16 - Sequence diagram of GetAllRecords method executed with FHIR protocol 49

Figure 17 - Sequence diagram of GetLastRecord method executed with FHIR protocol 51

Figure 18 - Sequence diagram of GetAllRecords method executed with EHDSI protocol 52

Figure 19 - Sequence diagram of GetLastRecord method executed with EHDSI protocol 54

Figure 20 - D2D and R2D Data Model 56

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 1

1. INTRODUCTION

1.1. Scope of the document

The main goal of this document is to deliver the initial version of the design of the libraries offered by the

InteropEHRate Framework as a reference implementation of the device-to-device (D2D) and the remote-to-

device (R2D) health record exchange protocols. The current document outlines for both protocols (i.e. D2D

and R2D will be realized as libraries enabling their exploitation in various implementation contexts for

health data exchange) the interfaces of their libraries describing the Java methods offered by the libraries

to the HCP app and to the S-EHR app, which allows to send and receive the messages of the protocols.

In greater detail, this deliverable describes two libraries for the D2D protocol and one library for the R2D

protocol. Regarding the D2D protocol, the first library is a Java-based component that can be nested in any

Android application (Android Version 4.3 or higher). It offers a set of Java operations for establishing a D2D

connection and allowing a mobile app of a Citizen to exchange his/her personal health records using the

D2D protocol. The second library is a Java-based component that can be embedded in any Java application

(Web or Desktop applications). It offers a set of Java operations enabling the application (used by a HCP) to

send and receive the data of a citizen near him/her. Regarding the R2D protocol, the main objective of the

library is to simplify the usage of R2D protocol to mobile apps developers in order to foster the adoption

and the propagation of R2D. It offers a set of Java operations for allowing a mobile application of a Citizen

to receive his/her personal health records using the R2D protocol, whereas the mobile application

developers will use R2D without the need to know all the technical details of the underlying R2D concrete

protocols (FHIR or eHDSI) and technologies.

All the libraries ensure the corresponding required security levels by exploiting the components of the

Security Library. The design of the security library is provided in deliverable D3.9 - Design of libraries for HR

security and privacy services - V1 [D3.9]. Hence, the purpose of this document is to firstly describe the

name and the usage of the libraries from the side of the involved applications, including the interactions

with their offered and required Java interfaces.

1.2. Intended audience

The current document is mainly intended for developers, and manufacturers that are interested in

designing and building either S-EHR applications or HCP applications who desire to exploit and reuse either

the D2D or the R2D or both these two functionalities offered by the InteropEHRate framework, in the

context of their applications. As a result, this audience will be able to offer the aforementioned separate

functionalities in their developed applications, since both the D2D and the R2D protocols can be easily

adopted by other systems and applications. Apart from that, the document is intended to researchers as

well, as they may be interested in understanding the way that those libraries work, influenced by them, and

possibly extending and updating them.

1.3. Structure of the document

The current document is organized in the following Sections:

● Section 1 (the current section) introduces the overall concept of the document, defining its scope,

intended audience, and relation to the other project tasks and reports.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 2

● Section 2 outlines the short range health data exchange protocol (D2D), describing in deep detail

the purpose of the existence of the protocol, whereas stating the design of the libraries

implementing the D2D protocol, in the form of external operations and the way that they are

invoked.

● Section 3 describes the remote health data exchange protocol (R2D), describing in deep detail the

purpose of the existence of the protocol, whereas stating the design of the libraries implementing

the R2D protocol, in the form of both internal and external operations and the way that they are

invoked.

● Section 4 describes the data model that is currently being used for both the D2D and the R2D

protocols.

● Section 5 outlines the conclusions of the current document, including future developments and

updates of the two libraries.

1.4. Updated with respect to previous version (if any)

Since this document is the initial version of the design of the libraries for D2D and R2D health record

exchange, there does not exist any update with regards to previous related documents.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 3

2. Design of the D2D Libraries

The D2D protocol defines the set of operations and the exchanged messages that allow the exchange of

health data between a S-EHR App and a near HCP App (i.e. in the context of a distance of up to 10m long)

without the usage of internet. More details about the D2D protocol specification can be found in D4.1 -

Specification of remote and D2D protocol and APIs for HR exchange V1 [D4.1]. This section of the

document (Section 2), provides the design of the libraries including a short description of D2D Libraries that

can be used by any S-EHR app and HCP App, describing the name and the usage of the D2D Library from the

side of the S-EHR app, and the name and the usage of the D2D Library from the side of the HCP app.

Moreover, the description of the Public Java Components contained in each library is defined, including a

description of the offered and required interfaces of those components. In addition, the description of the

interactions of the components of the libraries takes place, whereas the dependencies from third party

libraries are also depicted. To this end, the operations of the libraries interfaces are also described through

providing their internal interactions.

2.1. D2D Libraries

The D2D protocol will define the bluetooth operations represented by the interfaces that will be offered by

the mobile application and the healthcare’s organization application communicating with the S-EHR app

and the HCP app accordingly. These interfaces will be included in both applications, and will be used by the

two main actors of the D2D protocol, the citizens and the HCPs. These two actors will be the only ones

involved in the overall interaction, for exchanging the consent of accessing each one's personal data, the

healthcare related data, and the evaluation data. In order for the D2D protocol to realize the

communication and interaction with the two parties, two different interfaces will be designed and realized.

The first interface (MD2DI) will be responsible for offering the bluetooth operations and services by the S-

EHR app for interconnecting, exporting messages and receiving requests from the HCP app, while the

second interface (TD2DI) will be responsible for offering the bluetooth operations and services by the HCP

app for similar types of tasks from the S-EHR app. The overall communication will be based on the

Bluetooth short-range wireless communication technology, hence the initial step of the overall D2D

protocol will be the two involved actors to pair and bond their devices, prior to exchanging any messages.

Figure 1 displays the overall connection between a citizen and an HCP, including the aforementioned

interfaces, as well as the involved applications.

Figure 1 - D2D protocol interfaces

These interfaces will be included into the libraries which are especially designed for serving the purposes of

the D2D protocol from the side of the S-EHR app and the HCP app.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 4

2.1.1. S-EHR-side D2D library

Regarding the S-EHR-side D2D library (i.e. M-D2D-E), this will contain the total of the operations that will be

needed from the side of the S-EHR application developer to interact with the library and finally with the

HCP application. This library will contain different operations that will have to be invoked in a specific

sequence for implementing the purposes of the D2D protocol, regarding the S-EHR app. As described

previously, this library is a Java-based component that can be nested in any Android application (version 8

or higher). It offers a set of Java operations for establishing a D2D connection and allowing a mobile app of

a Citizen to exchange her personal health records using the D2D protocol.

2.1.1.1. Components

The M-D2D-E library incorporates a set of components (Figure 2) offering different functionalities and

capabilities to the developer. These components can be offered publicly (i.e. Public components), including

two major component categories: (a) the Mobile D2D Security Management that includes all the operations

and functionalities related to security operations, and (b) the Mobile D2D HR Exchange that includes all the

operations and functionalities related to communication operations. The second component category (i.e.

Mobile D2D HR Exchange) includes two additional component categories, namely Bluetooth Connection

and Data Exchange components, which are related to the functionalities for performing the connection

through the Bluetooth short-range wireless communication technology and the overall data exchange

actions accordingly.

Figure 2 - M-D2D-E Public Java Components

2.1.1.2. Public Interfaces

The components defined in Section 2.1.1.1 are offering specific interfaces, categorized into two main

categories, the offered and the required ones. The offered interfaces contain the operations which are

offered by the M-D2D-E library and can be used by the developer without the need of any implementation

from the developer’s side, whereas the required interfaces contain operations whose implementation is

not offered, and the developer has to implement specific callback operations that the specific interface will

invoke. These interfaces are depicted in Figure 3 and explained below.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 5

Figure 3 - M-D2D-E Public Java Components Interfaces

MD2DI-Security

MD2DI-Security is the name of the interface that is offered by the Mobile D2D Security Management

component, containing the operations related to the S-EHR app and its interactions with the Security

Library. More details regarding this interface as well as the provided operations can be found in D3.9 -

Design of libraries for HR security and privacy services - V1 [D3.9]. It should be noted that this interface is

offered to the developer without the need of implementing the included operations (i.e. Offered interface).

MD2DI

MD2DI is the name of the interface that is offered by the Mobile D2D HR Exchange component, containing

the operations for letting the S-EHR app interact with the M_D2D_E library and finally perform

communication actions with the HCP app, by invoking these operations. MD2DI is a nested interface

containing additional interfaces for facilitating this communication process. These interfaces will be the: (a)

D2DConnection, (b) D2DConnectionListeners, (c) D2DHRExchange and (d) D2DHRExchangeListeners. It

should be noted that the D2DConnection and the D2DHRExchange interfaces are offered to the developer

without the need of implementing the included operations, whereas for the D2DConnectionListeners and

the D2DHRExchangeListeners it is required from the developer to implement specific callback operations

that will be invoked by the aforementioned interfaces.

(a) D2DConnection

The D2DConnection interface contains all the operations that have to be invoked for performing the

bluetooth connection, regarding the side of the M-D2D-E library.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 6

Operation broadcastConnection

Name BroadcastConnection

Description This operation is invoked by the S-EHR app for connecting with the HCP who

advertises a specified Bluetooth connection.

Arguments ● BTadapterMACaddress: a string that contains the MAC address of the

Bluetooth adapter that is used from the side of the HCP.

Return Value This operation will return the new thread that was opened for listening for

incoming messages.

Exceptions ● Security exceptions related to Bluetooth state.

● Network exceptions related to Bluetooth state.

Preconditions ● The smartphone is enabled with Bluetooth v4.0 and above.

Operation closeConnection

Name CloseConnection

Description This operation is invoked by the S-EHR app for closing the bluetooth connection

between the two devices.

Arguments -

Return Value -

Exceptions ● Security exceptions related to Bluetooth state.

● Network exceptions related to Bluetooth state.

Preconditions ● The smartphone is enabled with Bluetooth v4.0 and above.

(b) D2DConnectionListeners

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 7

The D2DConnectionListeners interface contains all the operations that have to be invoked for listening to

the actions related to the bluetooth connection closure, regarding the side of the M-D2D-E library.

Operation onConnectionClosure

Name onConnectionClosure

Description This operation is invoked by the D2D library to notify the S-EHR app when there

is a connection closure.

Arguments ● closureMessage: a coded message that represents details about the

reason the connection closure happened.

Return Value -

Exceptions ● Security exceptions related to Bluetooth state.

● Network exceptions related to Bluetooth state.

Preconditions ● The smartphone is enabled with Bluetooth v4.0 and above.

● The session is still valid.

(c) D2DHRExchange

The D2DHRExchange interface contains all the operations that have to be invoked for performing the data

exchange processes, regarding the side of the M-D2D-E library.

Operation getHealthOrganizationIdentity

Name getHealthOrganizationIdentity

Description This operation is invoked by the S-EHR app for requesting the Healthcare

organization identity data from the HCP as provided from the HCP app.

Arguments -

Return Value -

Exceptions ● Security exceptions related to Bluetooth state.

● Network exceptions related to Bluetooth state.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 8

Preconditions ● The smartphone is enabled with Bluetooth v4.0 and above.

● The session is still valid.

Operation getEvaluationData

Name GetEvaluationData

Description This operation is invoked by the S-EHR app for requesting the evaluation data of

the patient summary from the HCP.

Arguments -

Return Value -

Exceptions ● Security exceptions related to Bluetooth state.

● Network exceptions related to Bluetooth state.

Preconditions ● The smartphone is enabled with Bluetooth v4.0 and above.

● The session is still valid.

(d) D2DHRExchangeListeners

The D2DHRExchangeListeners interface contains all the operations that have to be invoked for listening to

the actions related to the exchange of specific types of data, regarding the side of the M-D2D-E library.

Operation onHealthOrganizationIdentityReceived

Name onHealthOrganizationIdentityReceived

Description This operation is invoked by the D2D library for informing the S-EHR app that

the Healthcare Organization personal identity has been received from the side

of the HCP app.

Arguments ● practitioner: the HCP’s demographic data, with a reference to the data

related to the HCP’s organization in the form of a FHIR object.

Return Value -

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 9

Exceptions ● Security exceptions related to Bluetooth state.

● Network exceptions related to Bluetooth state.

Preconditions ● The smartphone is enabled with Bluetooth v4.0 and above.

● The session is still valid.

Operation onPersonalIdentityRequested

Name onPersonalIdentityRequested

Description This operation is invoked by the D2D library for requesting the patient’s

personal identity (i.e. demographic data) from the S-EHR app.

Arguments -

Return Value This operation will return the Personal Identity (i.e demographic data) from the

patient in the form of a FHIR object containing specific details that identify the

citizen.

Exceptions ● Security exceptions related to Bluetooth state.

● Network exceptions related to Bluetooth state.

Preconditions ● The smartphone is enabled with Bluetooth v4.0 and above.

● The session is still valid.

Operation onConsentRequestReceived

Name onConsentRequestReceived

Description This operation is invoked by the D2D library for getting the consent details from

the HCP App and requesting the consent response from the S-EHR app.

Arguments ● consent: a string that represents all the information a citizen needs to

give consent for his data

Return Value This operation will return a boolean that represents the answer regarding the

case that the citizen has approved the consent to provide her data or not.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 10

Exceptions ● Security exceptions related to Bluetooth state.

● Network exceptions related to Bluetooth state.

Preconditions ● The smartphone is enabled with Bluetooth v4.0 and above.

● The session is still valid.

Operation onPatientSummaryRequested

Name onPatientSummaryRequested

Description This operation is invoked by the D2D library for requesting the Patient Summary

of the citizen from the S-EHR app.

Arguments -

Return Value This operation will return the Patient Summary of the citizen in the form of a

FHIR object containing specific details about the patient’s medical history.

Exceptions ● Security exceptions related to Bluetooth state.

● Network exceptions related to Bluetooth state.

Preconditions ● The smartphone is enabled with Bluetooth v4.0 and above.

● The session is still valid.

Operation onEvaluationDataReceived

Name onEvaluationDataReceived

Description This operation is invoked by the D2D library for informing the S-EHR app that

the evaluation data of the patient summary has been received from the side of

the HCP app.

Arguments ● evaluationData: evaluation data in a form of Bundle (i.e. FHIR Resource

Bundle).

Return Value -

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 11

Exceptions ● Security exceptions related to Bluetooth state.

● Network exceptions related to Bluetooth state.

Preconditions ● The smartphone is enabled with Bluetooth v4.0 and above.

● The session is still valid.

2.1.1.3. Example of usage of M-D2D-E

The following sequence diagram (Figure 4) shows the fundamental steps executed by the S-EHR app in

order to retrieve the Health Organization Identity from the HCP app, using the operations

getHealthOrganizationIdentity(). The first part of the sequence diagram shows the creation of the listeners

for being notified of the requested process, while the second part shows the sequence of invocations of

operations described in the previous sections. However, it should be noted that some of these operations

are described in the upcoming section (Section 2.1.2) but are described in this example, since both libraries

need to communicate with each other for demonstrating an end-to-end example. It is important to state

that the following sequence does not show the real complexity and the complete interactions between

components, because its main objective is to focus on interfaces, methods and data used by the S-EHR app.

Figure 4 - Example of retrieving the Health Organization Identity

Step 1: Creation of the T-D2DListener for creating asynchronous callbacks from the side of the HCP app

(HCP-A), in order to implement the code to run when an event occurs.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 12

Step 2: Creation of the M-D2DListener for creating asynchronous callbacks from the side of the S-EHR app

(S-EHR-A), in order to implement the code to run when an event occurs.

Step 3: The S-EHR app registers the listener to track it and pass on the events to it.

Step 4: The HCP app registers the listener to track it and pass on the events to it.

Step 5: The S-EHR app is invoking the getHealthOrganizationIdentity() operation for retrieving the Health

Organization identity from the side of the HCP app. This request is sent through the Bluetooth

communication (Step 5.1) where the T-D2DListener, as soon as it listens to this request (Step 5.1.1),

through the onHealthOrganizationIdentityRequested() operation, it receives the response to this request by

providing a Practitioner Object (Step 5.1.1.1). This Object is transferred through the Bluetooth

communication (Step 5.1.2), where the M-D2DListener, as soon as it listens to the response to the request

(Step 5.1.2.1), through the onHealthOrganizationIdentityReceived(Practitioner) operations, it provides the

transferred object back to the S-EHR app (Step 5.1.2.1.1).

2.1.1.4. Third Party Libraries

The M-D2D-E library is currently dependent on two external libraries (Figure 5). These libraries are: (a) the

HAPI FHIR Library, and (b) the Android Bluetooth API.

HAPI FHIR Library

The HAPI FHIR Library v4.1.0 [HAPI] is being used to define model classes for the resource type and

datatype defined by the FHIR specification, based on the current data model that is described in D2.7 -

Interoperability Profile Implementable Level Specification [D2.7]. In the case of the M-D2D-E library, the

HAPI FHIR Library is being used for transferring FHIR Resources in the form of FHIR objects (e.g. Patient

Resource, Practitioner Resource) through the operations offered by the D2DHRExchangeListeners interface.

Currently, the HAPI FHIR Library is used as a Gradle dependency in the Gradle file of the M-D2D-E library.

Android Bluetooth API

The Android Bluetooth API [ANDROID BLUETOOTH] is being used to support the Bluetooth network stack,

which allows a device to wirelessly exchange data with other Bluetooth devices. In the case of the M-D2D-E

library, the Android Bluetooth API is being used for Bluetooth connection and the wireless exchange of data

through the operations offered by the D2DConnection and the D2DConnectionListeners interfaces.

Currently, the Android Bluetooth API is being provided as a Maven dependency in the pom.xml file of the

project of the M-D2D-E library.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 13

Figure 5 - M-D2D-E Third Party Libraries

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 14

2.1.2. HCP-side D2D library

Regarding the HCP-side D2D library (T-D2D-E), this will contain the total of the operations that will be

needed from the side of the HCP application developer to interact with the library and finally with the S-

EHR application. This library will contain different operations that will have to be invoked in a specific

sequence for implementing the purposes of the D2D protocol, regarding the HCP app. As described above,

the second library is a Java based component that can be embedded in any Java based application. It offers

a set of operations for establishing a D2D connection and enabling the application used by a HCP to send

and receive data of a Citizen near her.

2.1.2.1. Components

The T-D2D-E library contains a set of components (Figure 6) offering different functionalities and

capabilities to the developer. These components can be offered publicly (i.e. Public components), including

two major component categories: (a) the Terminal D2D Security Management that includes all the

operations and functionalities related to security operations, and (b) the Terminal D2D HR Exchange that

includes all the operations and functionalities related to communication operations. The second

component category (i.e. Terminal D2D HR Exchange) includes two additional component categories,

namely Bluetooth Connection and Data Exchange components, which are related to the functionalities for

performing the connection through the bluetooth short-range wireless communication technology and the

overall data exchange actions accordingly.

Figure 6 - T-D2D-E Public Java Components

2.1.2.2. Public Interfaces

The components defined in Section 2.1.2.1 are offering specific interfaces, categorized into two main

categories, the offered and the required interfaces. The offered interfaces contain the operations which are

offered by the T-D2D-E library and can be used by the developer without the need of any implementation

from the developer’s side, whereas the required interfaces contain operations whose implementation is

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 15

not offered, and the developer has to implement specific callback operations that the specific interface will

invoke. These interfaces are depicted in Figure 7 and explained below.

Figure 7 - T-D2D-E Public Java Components Interfaces

TD2DI-Security

TD2DI-Security is the name of the interface that is offered by the Terminal D2D HR Exchange component,

containing the operations related to the HCP app and its interactions with the Security Library. More details

regarding this interface as well as the provided operations can be found in [D3.9]. It should be noted that

this interface is offered to the developer without the need of implementing the included operations (i.e.

Offered interface).

TD2DI

TD2DI is the name of the interface that is offered by the Terminal D2D HR Exchange component, containing

the operations for letting the HCP app interact with the T-D2D-E library and finally perform communication

actions with the S-EHR app, by invoking these operations. TD2DI is a nested interface containing additional

interfaces for facilitating this communication process. These interfaces will be the: (a) D2DConnection, (b)

D2DConnectionListeners, (c) D2DHRExchange and (d) D2DHRExchangeListeners. It should be noted that the

D2DConnection and the D2DHRExchange interfaces are offered to the developer without the need of

implementing the included operations, whereas for the D2DConnectionListeners and the

D2DHRExchangeListeners it is required from the developer to implement specific callback operations that

will be invoked by the aforementioned interfaces.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 16

(a) D2DConnection

The D2DConnection interface contains all the operations that have to be invoked for performing the

bluetooth connection, regarding the side of the T-D2D-E library.

Operation listenConnection

Name listenConnection

Description This operation is invoked by the HCP app for creating a server socket waiting for

a device to connect and start a new thread when one is found.

Arguments -

Return Value This operation will return the new thread that was opened for listening for

incoming messages.

Exceptions ● Security exceptions related to Bluetooth connection.

● Network exceptions related to Bluetooth connection failure.

Preconditions ● The HCP app is enabled with Bluetooth v4.0 and above.

Operation closeConnection

Name closeConnection

Description This operation is invoked by the HCP app for closing the bluetooth connection

between the two devices.

Arguments -

Return Value -

Exceptions ● Security exceptions related to Bluetooth connection.

● Network exceptions related to Bluetooth connection failure.

Preconditions ● The HCP app is enabled with Bluetooth v4.0 and above.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 17

Operation getBTAdapterMACAddress

Name getBTAdapterMACAddress

Description This operation is invoked by the HCP app to get the current device's Bluetooth

Adapter MAC Address.

Arguments ● -

Return Value This operation returns this device's Bluetooth MAC Address in the requested

format.

Exceptions ● Security exceptions related to Bluetooth state.

● Network exceptions related to Bluetooth state.

Preconditions ● The HCP app is enabled with Bluetooth v4.0 and above.

(b) D2DConnectionListeners

The D2DConnectionListeners interface contains all the operations that have to be invoked for listening to

the actions related to the bluetooth connection closure, regarding the side of the T-D2D-E library.

Operation onConnectionClosure

Name onConnectionClosure

Description This operation is invoked by the D2D library to notify the HCP app when there is

a connection closure.

Arguments ● closureMessage: a coded message that represents details about the

reason the connection closure happened.

Return Value -

Exceptions ● Security exceptions related to Bluetooth state.

● Network exceptions related to Bluetooth state.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 18

Preconditions ● The HCP app is enabled with Bluetooth v4.0 and above.

● The session is still valid.

(c) D2DHRExchange

The D2DHRExchange interface contains all the operations that have to be invoked for performing the data

exchange processes, regarding the side of the T-D2D-E library.

Operation getPersonalIdentity

Name getPersonalIdentity

Description This operation is invoked by the HCP App for requesting the Personal Identity

data from the citizen.

Arguments ● -

Return Value -

Exceptions ● Security exceptions related to Bluetooth state.

● Network exceptions related to Bluetooth state.

Preconditions ● The HCP App is enabled with Bluetooth V4.0 and above.

● The session is still valid.

Operation getConsent

Name getConsent

Description This operation is invoked by the HCP App for requesting the consent from the

citizen.

Arguments ● consent: a string that represents all the information a citizen needs to

give consent for his data.

Return Value -

Exceptions ● Security exceptions related to Bluetooth state.

● Network exceptions related to Bluetooth state.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 19

Preconditions ● The HCP app is enabled with Bluetooth v4.0 and above.

● The session is still valid.

Operation getPatientSummary

Name getPatientSummary

Description This operation is invoked by the HCP App for requesting the patient summary

data from the citizen.

Arguments -

Return Value -

Exceptions ● Security exceptions related to Bluetooth state.

● Network exceptions related to Bluetooth state.

Preconditions ● The HCP app is enabled with Bluetooth v4.0 and above.

● The session is still valid.

(d) D2DHRExchangeListeners

The D2DHRExchangeListeners interface contains all the operations that have to be invoked for listening to

the actions related to the exchange of specific types of data, regarding the side of the T-D2D-E library.

Operation onHealthOrganizationIdentityRequested

Name onHealthOrganizationIdentityRequested

Description This operation is invoked by the D2D library for getting the Healthcare

Organization personal identity from the HCP app.

Arguments -

Return Value This operation will return the Healthcare Organization identity in the form of a

FHIR object containing specific details that identify the Organization.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 20

Exceptions ● Security exceptions related to Bluetooth state.

● Network exceptions related to Bluetooth state.

Preconditions ● The HCP app is enabled with Bluetooth v4.0 and above.

● The session is still valid.

Operation onPersonalIdentityReceived

Name onPersonalIdentityReceived

Description This operation is invoked by the D2D library for informing the HCP app that the

Personal identity data (i.e. demographic data) of the citizen has been received

from the side of the S-EHR app.

Arguments ● patient: a patient’s demographic data in the form of a FHIR object.

Return Value -

Exceptions ● Security exceptions related to Bluetooth state.

● Network exceptions related to Bluetooth state.

Preconditions ● The HCP app is enabled with Bluetooth v4.0 and above.

● The session is still valid.

Operation onConsentResponseReceived

Name onConsentResponseReceived

Description This operation is invoked by the D2D library for informing the HCP app that the

response on consent of the citizen has been received from the side of the S-EHR

app.

Arguments ● response: a boolean that represents if the patient gives consent to send

his data or not.

Return Value -

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 21

Exceptions ● Security exceptions related to Bluetooth state.

● Network exceptions related to Bluetooth state.

Preconditions ● The HCP app is enabled with Bluetooth v4.0 and above.

● The session is still valid.

Operation onPatientSummaryReceived

Name onPatientSummaryReceived

Description This operation is invoked by the D2D library for informing the HCP app that the

Patient Summary of the citizen has been received from the side of the S-EHR

app.

Arguments ● patientSummary: a patient’s summary in a form of Bundle (i.e. FHIR

Resource Bundle)

Return Value -

Exceptions ● Security exceptions related to Bluetooth state.

● Network exceptions related to Bluetooth state.

Preconditions ● The HCP app is enabled with Bluetooth v4.0 and above.

● The session is still valid.

Operation onEvaluationDataRequested

Name onEvaluationDataRequested

Description This operation is invoked by the D2D library for getting the evaluation data from

the HCP app.

Arguments -

Return Value This operation will return the evaluation data in the form of a Bundle (i.e. FHIR

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 22

Resource Bundle) containing observations of the Patient Summary.

Exceptions ● Security exceptions related to Bluetooth state.

● Network exceptions related to Bluetooth state.

Preconditions ● The HCP app is enabled with Bluetooth v4.0 and above.

● The session is still valid.

2.1.2.3. Example of usage of T-D2D-E

The following sequence diagram (Figure 8) shows the fundamental steps executed by the HCP app in order

to retrieve the Patient Summary from the S-EHR app, using the operations getPatientSummary(). The first

part of the sequence diagram shows the creation of the listeners for being notified of the requested

process, while the second part shows the sequence of invocations of operations described in the previous

sections. It is important to state that the following sequence does not show the real complexity and the

complete interactions between components, because its main objective is to focus on interfaces, methods

and data used by the HCP app.

Figure 8 - Example of retrieving the Patient Summary

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 23

Step 1: Creation of the T-D2DListener for creating asynchronous callbacks from the side of the HCP app

(HCP-A), in order to implement the code to run when an event occurs.

Step 2: Creation of the M-D2DListener for creating asynchronous callbacks from the side of the S-EHR app

(S-EHR-A), in order to implement the code to run when an event occurs.

Step 3: The S-EHR app registers the listener to track it and pass on the events to it.

Step 4: The HCP app registers the listener to track it and pass on the events to it.

Step 5: The HCP app is invoking the getPatientsummary() operation for retrieving the Patient Summary

from the side of the S-EHR app (Step 5). This request is sent through the Bluetooth communication (Step

5.1) where the M-D2DListener, as soon as it listens to this request, through the

onPatientSummaryRequested() operation (Step 5.1.1), it receives the response to this request by providing

a Bundle (Step 5.1.1.1). This Bundle is transferred through the Bluetooth communication (Step 5.1.2),

where the T-D2DListener, as soon as it listens to the response to the request (Step 5.1.2.1), through the

onPatientSummaryReceived(Bundle) operation, it provides the transferred object back to the HCP app

(Step 5.1.2.1.1).

2.1.2.4. Third Party Libraries

The T-D2D-E library is currently dependent on two external libraries (Figure 9) that contain the interfaces

and the offered operations. These libraries are: (a) the HAPI FHIR Library, and (b) the Bluecove Library.

HAPI FHIR Library

The HAPI FHIR Library v4.1.0 [HAPI] is being used to define model classes for the resource type and

datatype defined by the FHIR specification, based on the current data model that is described in D2.7 -

Interoperability Profile Implementable Level Specification [D2.7]. In the case of the T-D2D-E library, the

HAPI FHIR Library is being used for transferring FHIR Resources in the form of FHIR objects (e.g. Patient

Resource, Practitioner Resource) through the operations offered by the D2DHRExchangeListeners interface.

Currently, the HAPI FHIR Library is being used as a Gradle dependency in the Gradle file of the T-D2D-E

library.

Bluecove Library

The Bluecove Library v2.1.0 [BLUECOVE] is being used to support Mac OS X, WIDCOMM, BlueSoleil and

Microsoft Bluetooth stack found in Windows XP SP2 or Windows Vista and WIDCOMM and Microsoft

Bluetooth stack on Windows Mobile, allowing a device to wirelessly exchange data with other Bluetooth

devices. In the case of the T-D2D-E library, the Bluecove Library is being used for Bluetooth connection and

the wireless exchange of data through the operations offered by the D2DConnection and the

D2DConnectionListeners interfaces. Currently, the Bluecove Library is being provided as a Maven

dependency in the pom.xml file of the project of the T-D2D-E library.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 24

Figure 9 - T-D2D-E Third Party Libraries

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 25

3. Design of the R2D Library for mobile

This section of the document (Section 3), provides the design of the M-R2D-E library, describing the name

and the usage of the R2D Library from the side of the S-EHR app. Moreover, the description of the Public

Java Components contained in each library is defined, including a description of the OFFERED and

REQUIRED interfaces of those components. In addition, the description of the interactions of the

components of the libraries takes place, whereas the dependencies from third party libraries are also

depicted. To this end, the private components of the libraries are described, in combination with their

internal interactions.

3.1. R2D Library

As defined in D4.1 - Specification of remote and D2D protocol and APIs for HR exchange V1 [D4.1], the R2D

protocol defines the set of operations used for enabling the exchange of health data between a local or

National EHR or a S-EHR Cloud and the S-EHR App with the usage of the internet. In order to simplify the

adoption of R2D by developers of apps, the InteropEHRate project develops a library for mobile named M-

R2D-E. The objective of this library is to allow the usage of R2D without knowing all the technical details of

the underlying R2D concrete protocols (FHIR or eHDSI) and technologies. The M-R2D-E library acts as a

proxy for a NCP compliant to R2D specifications.

3.1.1. R2D Library External view

This section provides a description of the external view of M-R2D-E library, it describes the interfaces of

classes and the structure of data directly used by S-EHR App or by any generic app using M-R2D-E. The

external view of the M-R2D-E is composed by the following UML diagrams:

● a component diagram showing: i) the interfaces used by the S-EHR app to interact with the main

components of the library, ii) the dependencies with other libraries of the InteropEHRate project,

or third party libraries;

● a class diagram defining the interface of the components used by the S-EHR app;

● a class diagram showing the data model used by the S-EHR app;

● a sequence diagram showing the interactions between S-EHR and M-R2D-E components in order to

perform a basic transaction based on R2D protocol.

This section is not intended to provide a full detailed design of the internal structure of M-R2D-E library, but

only to describe the basic usage of the library focusing on the following steps:

● how to instantiate the library;

● how to invoke methods of R2D;

● how to browse results.

3.1.1.1. Components

The following component diagram provides an overall view of the M-R2D-E structure, it shows the external

interfaces provided to clients, the internal components implementing the interfaces and their main

dependencies from other internal components or external libraries.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 26

Figure 10 - M-R2D-E component diagram

In order to use the M-R2D-E library, the S-EHR app must interact mainly with two components,

MR2DFactoryImpl and MR2DFacade through the interface they provide: the MR2DFactory and the MR2D.

The MR2DFactory defines methods for creating instances of classes implementing the MR2D interface,

while the MR2D interface defines methods for exchanging data with a NCP.

As the R2D protocol is based over two concrete protocols (FHIR and eHDSI), the main responsibility of the

M-R2D-E is to convert generic requests made by the client, into concrete requests submitted to a specific

NCP and previously converted in accordance to the protocol adopted by the NCP. This responsibility is

delegated, by the MR2DFacade, to two specific components:

● MR2DOverFHIR: this component is able to interact with a NCP using FHIR. In order to do this, the

MR2DOverFHIR component uses third party libraries provided by the HAPI FHIR open source

project.

● MR2DOverEHDSI: this component is able to interact with a using eHDSI. In order to do this, the

MR2DOverEHDSI component uses third party libraries containing proxy client for eHDSI / SOAP

protocol.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 27

3.1.1.2. Public Interfaces

The following diagram shows the complete definition of the interfaces MR2DFactory and R2D. The Java

interface (MR2D) offered by the R2D library allows to invoke operations of R2D interface offered by the

NCP node described in deliverable D4.1 (Specification of remote and D2D protocol and APIs for HR

exchange). For this reason the interface offered by the library mirrors the one offered by the NCP node. The

main differences between the two interfaces is the absence, on the MR2D interface, of the operation called

nextBundle whose purpose was to navigate the pages that make up the results of a query. This

responsibility has been moved to the class named ResourceIterator, that allows fetching the results of a

query in a more natural way just by using the classic method next of an Iterator. This specific argument will

be described later, in the Internal View section of this chapter.

Figure 11 - M-R2D-E main interfaces

Interface MR2D

Defines all the methods for extracting data of a single patient from an NCP. The methods of the interface

have been designed to retrieve health data from the NCP in different ways, leaving to the client the

freedom to choose how to design the import functionality: retrieving a lot of data in a single invocation or

retrieving smaller chunks of data with several invocations.

Operation getAllRecords

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 28

Name getAllRecords

Description This method returns the logical union of all kinds of health data belonging to a

citizen and stored in an NCP, allowing the client to retrieve these data in a single

operation. Optionally, the client may specify a date indicating the date in which

health data must have been produced.

Arguments ● Date fromDate: a date indicating the day after which the requested

health data must have been produced.

● ResponseFormat responseFormat: one of the predefined

ResponseFormat enumeration values (STRUCTURED_CONVERTED,

STRUCTURED_UNCONVERTED, UNSTRUCTURED, ALL) identifying the

output format of the requested health data.

Return Value An instance of ResourceIterator for iterating over health records returned from

the execution of the underlying requests

Exceptions ● Security exceptions related to the validation of the session.

● Network exceptions related to failure during remote communication.

Preconditions ● The citizen has successfully executed the authentication using methods

provided from the M-R2D-SM library.

● The session is still valid.

Operation getRecords

Name getRecords

Description This method returns the logical union of some specific kinds of health data

belonging to a citizen and stored in an NCP, allowing the client to retrieve the

requested health data in a single operation. The client invoking this method

uses the HealthRecordType[] parameter to define what kind of health data he is

interested in. Optionally, the client may specify a date indicating the date in

which health data must have been produced.

Arguments ● HealthRecordType[] healtRecordTypes: an array of the predefined

HealthRecordType enumeration (PATIENT_SUMMARY, PRESCRIPTION,

DIAGNOSTIC_REPORT, DISCHARGE_REPORT) containing the types of

health data requested by the client.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 29

● Date fromDate: a date indicating the day after which the requested

health data must have been produced.

● ResponseFormat responseFormat: one of the predefined

ResponseFormat enumeration values (STRUCTURED_CONVERTED,

STRUCTURED_UNCONVERTED, UNSTRUCTURED, ALL) identifying the

output format of the requested health data.

Return Value An instance of ResourceIterator for iterating over health records returned from

the execution of the underlying requests

Exceptions ● Security exceptions related to the validation of the session.

● Network exceptions related to failure during remote communication.

Preconditions ● The citizen has successfully executed the authentication using methods

provided from the M-R2D-SM library.

● The session is still valid.

Operation getLastRecord

Name getLastRecord

Description This method allows a client to request the most recent version of only one

specific kind of health data belonging to a citizen.

Arguments ● HealthRecordType healtRecordType: an array of the predefined

HealthRecordType enumeration (PATIENT_SUMMARY, PRESCRIPTION,

DIAGNOSTIC_REPORT, DISCHARGE_REPORT) containing the types of

health data requested by the client.

● String sessionId: a valid session token, representing the user who

successfully executed the login. This sessionId is obtained directly from

the platform after successful execution of login method.

● ResponseFormat responseFormat: one of the predefined

ResponseFormat enumeration values (STRUCTURED_CONVERTED,

STRUCTURED_UNCONVERTED, UNSTRUCTURED, ALL) identifying the

output format of the requested health data.

Return Value An instance of a subclass of org.hl7.fhir.model.Resource

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 30

Exceptions ● Security exceptions related to the validation of the session.

● Network exceptions related to failure during remote communication.

Preconditions ● The citizen has successfully executed the authentication using methods

provided from the M-R2D-SM library.

● The session is still valid.

Operation getRecord

Name getRecord

Description This method allows the client to obtain a specific instance of health data

identified by its unique id.

Arguments ● String recordId: a valid id of a health data.

● String sessionId: a valid session token, representing the user who

successfully executed the login. This sessionId is obtained directly from

the platform after successful execution of login method.

● ResponseFormat responseFormat: one of the predefined

ResponseFormat enumeration values (STRUCTURED_CONVERTED,

STRUCTURED_UNCONVERTED, UNSTRUCTURED, ALL) identifying the

output format of the requested health data.

Return Value An instance of a subclass of org.hl7.fhir.model.Resource

Exceptions ● Security exceptions related to the validation of the session.

● Security exceptions related to the ownership of data (only health data

of the authenticated citizen can be accessed).

● Network exceptions related to failure during remote communication.

Preconditions ● The citizen has successfully executed the authentication using methods

provided from the M-R2D-SM library.

● The session is still valid.

Class MR2DFactoryImpl (Interface MR2DFactory)

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 31

MR2DFactoryImpl is a concrete class, providing static methods for creating instances of R2D. In the M-R2D-

E library, a client is not allowed to directly create instances of concrete subclasses of MR2D, the library does

not contain any public subclass of MR2D. The only way to obtain an instance of MR2D is by using the

MR2DFactory methods and providing to it the needed parameters.

Operation create

Name create

Description Creates an instance of a concrete implementation of MR2D.

Arguments ● patient: instance of a org.hl7.fhir.model.Patient containing all data of

the logged Citizen. The attribute address is MANDATORY.

● authToken: the authorization token obtained by invoking the

authentication method of M-R2D-SM library.

Return Value An instance of a class implementing the MR2D interface.

Exceptions ● Security exceptions related to the validation of the session.

● Network exceptions related to failure during remote communication.

Preconditions ● The citizen has successfully executed the authentication using methods

provided from the M-R2D-SM library.

● The session is still valid.

Interface ResourceIterator

This interface defines the methods of an Iterator for instances of class org.hl7.fhir.model.Resource.

Operation hasNext

Name hasNext

Description Returns a boolean indicating if there is still another item to iterate

Arguments void

Return Value boolean

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 32

Exceptions N/A

Preconditions N/A

Operation next

Name next

Description Returns the next element of an iterator and moves the iterator index on the

next item (if there’s one)

Arguments void

Return Value An instance of a subclass of org.hl7.fhir.model.Resource

Exceptions N/A

Preconditions N/A

3.1.1.3. Example of usage of M-R2D-E

The following sequence diagram shows the fundamental steps executed by S-EHR app in order to retrieve

data from an NCP using the method getAllRecords(). The first part of the sequence diagram shows the

authentication phase executed using M-R2D-SM methods (the diagram shows a conceptual version of the

M-R2D-SM interface), while the second shows the sequence of invocations of classes M-R2D-E classes

described in the previous sections.

It is important to state that the following sequence does not show the real complexity and the complete

interactions between components (especially during the creation of the instance of R2D), because its main

objective is to focus on interfaces, methods and data used by the S-EHR app. The internal complexity of M-

R2D-E library is the focus of the second section of this chapter.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 33

Figure 12 - Sequence diagram for getAllRecords()

● Step 1: a citizen requests to S-EHR app to import his health data from the national EHR.

● Step 1.1: The S-EHR app starts the user authentication to the national EHR, using credentials

provided by the citizen. If the authentication succeeds the S-EHR app obtains the authentication

token, and shows to the citizen the window for requesting the import options (what kind of health

data and from which date the import should start).

● Step 2: the citizen chooses the right import options and then starts the importing of his health data

in the S-EHR app.

● Step 2.1: in order to invoke the method for creating an instance of MR2D, the S-EHR app loads

from the DB the instance of the Patient containing data of the authenticated citizen.

● Step 2.2: S-EHR app invokes the static method create() of class MR2DFactoryImpl.

● Step 2.2.1: the MR2DFactoryImpl uses provided parameters to detect what is the nationality of the

citizen in order to connect to the right NCP using the proper connector (the connector that adopts

the real protocol supported by the NCP). Before ending, this method return to S-EHR app the

instance of a concrete (and private) class implementing MR2D interface.

● Step 2.3: S-EHR app uses the MR2D instance returned from the R2DFactoryImpl, to invoke the

getAllRecords() method and providing the import parameters defined by the citizen. This method

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 34

returns an instance of ResourceIterator used by S-EHR app to iterate through the set of health data

returned from the method.

● Step 2.4: the S-EHR app is iterating over results produced by method previously invoked. Within

this loop the S-EHR app invokes the method next() of the Iterator to gain access to the current item

in the Iterator.

● Step 2.5: S-EHR app store the last item read from iterator to its internal database.

Interacting with R2D protocol, using M-R2D-E library implies the following mandatory points:

1. authenticating user to its National EHR using API of M-R2D-SM library;

2. creating instances of MR2D using API of MR2DFactory class;

3. using the MR2D instance obtained by R2Factory for submitting query to National EHR;

4. using ResourceIterator to iterate over results produced by MR2D method invocation.

5. managing health data retrieved as FHIR resource (instances of concrete classes of package

org.hl7.fhir.model);

3.1.1.4. Third Party Libraries

(a) HAPI FHIR Library

As for the T_D2D_E library, the M-R2D-E uses the HAPI FHIR Library v4.1.0 [HAPI] to define model classes

for the resource type and datatype defined by the FHIR specification, based on the current data model that

is described in D2.7 - Interoperability Profile Implementable Level Specification [D2.7]. In the case of the M-

R2D-E library, the HAPI FHIR Library is being used for transferring FHIR Resources in the form of FHIR

objects (e.g. Patient Resource, Practitioner Resource) through the operations offered by the MR2D

interface.

(b) eHDSI SDK Library

The eHDSI SDK is being used to for interacting with an eHDSI compliant NCP. eHDSI SDK defines data and

proxy classes to submit requests to an eHDSI compliant NCP.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 35

3.1.2. R2D Library Internal view

The internal view of M-R2D-E provides architectural details about the internal structure of the library.

These details does not affect the external usage of the library described in previous section.

In order to completely understand the rationale behind some design decisions, it is better to recall the role

of the library: the M-R2D-E library has been conceived to foster the adoption of R2D from app developers,

simplifying the import health data from a national infrastructure.

In the next few years, EU Member States are expected to provide NCPs offering FHIR or eHDSI interfaces, it

will be possible to download health data in a standard way from all EU Member States. M-R2D-E acts as an

intermediate layer between the app and the NCP, not only hiding technical details of the two underlying

protocols, but also providing some virtual operations not offered natively by the protocols. These two

factors have been the most influencing factors in M-R2D-E internal design.

Figure 13 - Component diagram of M-R2D-E

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 36

The above diagram shows some additional components that were not shown in the previous component

diagram, these components are named: LazyQueryExecutor, EHDSIDAO and FHIRDAO. Their role is to

support MR2DOverFHIR and MR2DOverEHDSI to execute specific tasks over a specific protocol.

The relationships between these classes and the role that each one plays in the overall architecture is

explained in the next sections of this chapter.

Figure 14 - Class diagram of M-R2D-E library

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 37

The MR2DFacade class acts has a dispatcher of requests to another class (one of MR2DOverFHIR and

MR2DOverEHDSI) that implements the same MR2D interface and that acts as delegated class (the

relationship between an instance of MR2DFacade and its delegated MR2D is stored in the attribute

providerR2D of class MR2DFacade). The main capability of the delegated class is the ability to translate all

operations provided by the MR2D interface into specific transactions executed using the rules of one of the

supported protocols (the name of the classes are self-explanatory). MR2DOverFHIR and MR2DOverEHDSI

are two specialized implementations of MR2D, the first is able to interact to an NCP using FHIR language,

while the second is able to interact using eHDSI protocol. MR2DFacade is a concrete implementation of

MR2D able to speak both languages.

The relationship between an instance of MR2DFacade and its delegated class is established during the

execution of the create() method of the MR2DFactoryImpl class, creating this connection is the main

responsibility of the MR2DFactoryImpl class. There is no method (public or private) in the current API of M-

R2D-E able to break this link.

The following sequence diagram shows the creation process:

Figure 15 - Sequence diagram of the factory method create()

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 38

● Step 1: the s-EHR app creates an instance of Patient and fills it with patient’s data loaded from its

internal database.

● Step 2: the S-EHR app invokes the static method create() of class MR2DFactoryImpl, providing as

arguments, the instance of Patient created at step 1, and the authentication token obtained by the

authentication method executed using M-R2D-SM.

○ Step 2.1: MR2DFactoryImpl invokes the static method getNCPByCountry() of class

NCPRegistry, in order to retrieve information about the NCP of the county of the patient.

○ Step 2.2: optional step executed only if the NCP supports FHIR API. The MR2DFactoryImpl

creates an instance of class R2OverFHIR, providing as argument to the constructor, the

patient and the authentication token.

○ Step 2.3: optional step executed only if the NCP does not supports FHIR API. The

MR2DFactoryImpl creates an instance of class R2OverEHDSI, providing as argument to the

constructor, the patient and the authentication token.

○ Step 2.4: The MR2DFactoryImpl creates an instance of MR2DFacade class providing as

input parameter the instance of MR2D subclass created at step 2.2 / 2.3.

As shown in previous class diagram, both classes MR2DOverFHIR and MR2DOverEHDSI use specialized

classes, but also some common class, in particular these two classes: LazyQueryExecutor and

HealthRecordDAO. The first is used to manage the execution of complex queries that require more than

one interaction with the NCP, while the second is used to translate requests into the language of the

supported protocols.

The following sections provide definitions of the interfaces of LazyQueryExecutor and HealthRecordDAO,

and a concrete example of their usage by means of specific sequence diagrams.

Interface LazyQueryExecutor

LazyQueryExecutor defines the interface of a class that is able to manage the execution of a complex query.

In R2D a complex query is a query made up by different parts, that requires several interactions with the

NCP, but provided as a single operation to S-EHR app (the complexity of the underlying set of queries is

hidden to the client).

The execution of all the parts that make up a complex query is started invoking the start() method. This

method returns an instance of class LazyR2DIterator (an implementation of the interface ResourceIterator)

linked with the LazyQueryExecutor that creates it. When the cache of data handled by the LazyR2DIterator

is close to being empty (depending on the lazy policy implemented), the LazyR2DIterator must invoke the

method next() of its LazyQueryExecutor in order to asks for the next bunch of data. The LazyQueryExecutor

will submit a request to the NCP asking for the next chunk of data, until all data have been fetched from the

NCP.

This behaviour is described in details in the sequence diagrams contained in the following sections.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 39

Internal Operation start()

Name start

Description USed to start execution of a complex query (that requires more than one

interaction with the NCP)

Arguments void

Return Value An instance of LazyR2DIterator

Exceptions ● Security exceptions related to the validation of the session.

● Security exceptions related to the ownership of data (only health data

of the authenticated citizen can be accessed).

● Network exceptions related to failure during remote communication.

Preconditions ● The citizen has successfully executed the authentication using methods

provided from the M-R2D-SM library.

● The session is still valid.

Internal Operation next()

Name next

Description used to execute a part of a complex query

Arguments void

Return Value org.hl7.fhir.model.Bundle

Exceptions ● Security exceptions related to the validation of the session.

● Security exceptions related to the ownership of data (only health data

of the authenticated citizen can be accessed).

● Network exceptions related to failure during remote communication.

Preconditions ● The citizen has successfully executed the authentication using methods

provided from the M-R2D-SM library.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 40

● The session is still valid.

Class HealthRecordDAO <HealtRecordType>

This abstract class defines the characteristics (interface) of a class whose purpose is to submit requests to

an NCP using one specific protocol. The set of requests that this class must be able to execute is defined by

the methods of its interface: search(), getLast() and getById().

M-R2D-E library needs several concrete implementations of this class in order be able to submit all defined

requests to an NCP, using FHIR or eHDSI, and for all kind of health data managed (PATIENT_SUMMARY,

PRESCRIPTION, DIAGNOSTIC_REPORT, DISCHARGE_REPORT). Searching for Prescriptions in FHIR is quite

different from searching Prescriptions on eHDSI, hiding this is difference to a LazyQueryExecutor is the

reason behind the conception of this class.

Independently from the parameters explicitly provided by the citizen, the search scope of every

HealthRecordDAO is defined by two implicit and immutable factors: the first corresponds to the Template

parameter provided during instantiation (defines the type of health data to be searched), the second

corresponds to the authenticated citizen. This means that an implementation of HealthRecordDAO

<PRESCRIPTION> is only able to search for Prescriptions belonging to the authenticated Citizen even if no

parameters have been provided to the method.

Internal Operation search()

Name Search

Description Submit a search request to the NCP using the provided arguments.

Arguments A set of class Argument corresponding to the parameters provided by the

invoking client

Return Value an instance of org.hl7.fhir.model.Bundle <T>

Exceptions ● Security exceptions related to the validation of the session.

● Network exceptions related to failure during remote communication.

Preconditions ● The citizen has successfully executed the authentication using methods

provided from the M-R2D-SM library.

● The session is still valid.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 41

Internal Operation getLast()

Name getLast

Description Submit a search to the NCP, retrieving the most recent instance of a specific

kind of health data belonging to the Citizen.

Arguments A set of class Argument

Return Value an instance of org.hl7.fhir.model.Resource <T>

Exceptions ● Security exceptions related to the validation of the session.

● Network exceptions related to failure during remote communication.

Preconditions ● The citizen has successfully executed the authentication using methods

provided from the M-R2D-SM library.

● The session is still valid.

Internal Operation getById()

Name getById

Description Submit a search to the NCP, retrieving the most recent instance of a specific

kind of health data belonging to the Citizen.

Arguments A set of class Argument

Return Value an instance of org.hl7.fhir.model.Resource <T>

Exceptions ● Security exceptions related to the validation of the session.

● Network exceptions related to failure during remote communication.

Preconditions ● The citizen has successfully executed the authentication using methods

provided from the M-R2D-SM library.

● The session is still valid.

Class LazyIterator

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 42

This class is an implementation of the interface ResourceIterator (described in the previous sections) that

loads its data in a lazy way collaborating with LazyQueryExecutor.

3.1.2.1. MR2DOverFHIR

This section describes the design details of MR2DOverFHIR, that is the implementation of MR2D specialized

in interacting with an NCP supporting FHIR protocol. This class in order to submit requests with FHIR

protocol, collaborates with the following classes: FHIRLazyQueryExecutor and FHIRDAO, a concrete

implementation of class HealthRecordDAO <HealtRecordType>.

GetAllRecords

This sequence diagram shows the collaborations between components to execute the method

GetAllRecords(). The execution of this method is requested by S-EHR app in order to download all kinds of

health data of the patient (patient summary, prescriptions, diagnostic reports, discharge reports) from the

NCP, in a single request. FHIR specifications does not allow to execute the logical union of several queries,

so this union is performed locally by M-R2D-E, executing the different queries (that compose the overall

result) with lazy techniques, while S-EHR app is iterating over the initial results.

The GetAllRecord() method has been used as an example to show how the designed software is able to

execute a multi steps query execution.

For purposes of simplicity, the following sequence diagram does not show the initial steps (showed before)

performed to execute: i) authentication and ii) instantiation of R2D; these steps, even if not shown, must be

considered as executed by the Citizen.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 43

Figure 16 - Sequence diagram of GetAllRecords method executed with FHIR protocol

● Step 0 (not shown in the sequence diagram): the citizen has performed the authentication and has

created an instance of MR2D (MR2DOverFHIR) using the method R2FactoryImpl.create().

● Step 1: the citizen asks for the import of his health data from the national EHR, and provides import

options needed by the app.

● Step 1.1: the S-EHR app invokes method getAllRecords() on the instance of MR2D previously

created.

○ Step 1.1.1: the MR2DFacade dispatches the request to the specific MR2D provider, an

instance of MR2DOverFHIR.

○ Step 1.1.1.1: MR2DOverFHIR creates an instance of FHIRLazyQueryExecutor providing as

input parameter an array of Argument (derived by the import options chosen by the

citizen.

○ Step 1.1.1.1.1: FHIRLazyQueryExecutor creates all the instances of FHIRDAO that it needs in

order to perform the request.

○ Step 1.1.1.2: MR2DOverFHIR invokes method start() of FHIRLazyQueryExecutor, starting

the execution of the complex query.

○ Step 1.1.1.2.1: FHIRLazyQueryExecutor invokes method search() of the class

HealthRecordDAO, starting the search of the requested kind of health data of the citizen.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 44

○ Step 1.1.1.2.1.1: the HealthRecordDAO creates the corresponding FHIR request and submit

it to the NCP. The obtained Bundle is returned to the caller;

○ Step 1.1.1.2.2: creates an instance of LazyIterator providing the bundle as input parameter.

The iterator is returned to the caller, the first part of the getAllRecords has been executed,

the S-EHR app now can iterate over the results.

● Step 1.2: S-EHR stars iterating over query results, invoking the method next() of ResourceIterator.

○ Step 1.2.1 (executed optionally only if the cache is empty): the LazyIterator invokes the

method next() of its FHIRLazyQueryExecutor, asking for the next bunch of data.

○ Step 1.2.1.1: FHIRLazyQueryExecutor invokes method search() of the class

HealthRecordDAO, requesting the next page of data.

○ Step 1.2.1.1.1: the HealthRecordDAO creates the corresponding FHIR request and submit it

to the NCP. The obtained Bundle is returned to the caller (LazyIterator);

○ Step 1.2.2: the LazyIterator returns the current instance of Resource from the Bundle

● Step 1.3: the S-EHR app stores the resource in its database.

GetLastRecord

This sequence diagram shows the collaborations between components to execute the method

GetLastRecord(). The main difference between this method and the GetAllRecord() methods described

before, is that GetLastRecord is not executed with a multi steps query, because it is satisfied with just one

single remote request to the NCP.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 45

Figure 17 - Sequence diagram of GetLastRecord method executed with FHIR protocol

● Step 0 (not shown in the sequence diagram): the citizen has performed the authentication and has

created an instance of MR2D (MR2DOverFHIR) using the method R2FactoryImpl.create().

● Step 1: the citizen asks for the import of his patient summary from the national EHR, and provides

import options needed by the app.

● Step 1.1: the S-EHR app invokes method getLastRecord() on the instance of MR2D previously

created.

○ Step 1.1.1: the MR2DFacade dispatches the request to the specific MR2D provider, an

instance of MR2DOverFHIR.

○ Step 1.1.1.1: MR2DOverFHIR creates an instance of HealthRecordDAO to perform the

specific request.

○ Step 1.1.1.2: MR2DOverFHIR invokes method getLast() of the class HealthRecordDAO,

providing the needed input parameters as an array of Argument.

○ Step 1.1.1.2.1: the HealthRecordDAO creates the corresponding FHIR request and submit it

to the NCP. The obtained Bundle is returned to the caller;

○ Step 1.1.1.3: MR2DOverFHIR extracts the first item from the bundle and returns it to the

caller.

● Step 1.2: the S-EHR app stores the resource in its database

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 46

3.1.2.2. MR2DOverEHDSI

This section describes the design details of class MR2DOverEHDSI, that is the implementation of MR2D

specialized in interacting with an NCP supporting the eHDSI protocol. This class, in order to submit requests

with eHDSI protocol, collaborates with the following classes: EHDSILazyQueryExecutor and EHDSIDAO a

concrete implementation of class HealthRecordDAO <HealtRecordType>.

This section shows the sequence diagrams of the same two methods showed in the previous

section(getAllRecords() and getLastRecord()) but implemented for eHDSI.

GetAllRecords

Figure 18 - Sequence diagram of GetAllRecords method executed with EHDSI protocol

● Step 0 (not shown in the sequence diagram): the citizen has performed the authentication and has

created an instance of MR2D (MR2DOverEHDSI) using the method R2FactoryImpl.create().

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 47

● Step 1: the citizen asks for the import of his health data from the national EHR, and provides import

options needed by the app.

● Step 1.1: the S-EHR app invokes method getAllRecords() on the instance of MR2D previously

created.

○ Step 1.1.1: the MR2DFacade dispatches the request to the specific MR2D provider, an

instance of MR2DOverEHDSI.

○ Step 1.1.1.1: MR2DOverEHDSI creates an instance of EHDSILazyQueryExecutor providing as

input parameter an array of Argument (derived by the import options chosen by the

citizen.

○ Step 1.1.1.1.1: EHDSILazyQueryExecutor creates all the instances of HealthRecordDAO that

it needs in order to perform the request.

○ Step 1.1.1.2: MR2DOverEHDSI invokes method start() of EHDSILazyQueryExecutor, starting

the execution of the complex query.

○ Step 1.1.1.2.1: EHDSILazyQueryExecutor invokes method search() of the class

HealthRecordDAO, starting the search of the requested kind of health data of the citizen.

■ Step 1.1.1.2.1.1: the HealthRecordDAO creates the corresponding EHDSI request

and submit it to the NCP.

■ Step 1.1.1.2.1.1: the results in CDA format, are converted to FHIR format, the

obtained Bundle is returned to the caller.

○ Step 1.1.1.2.2: creates an instance of LazyIterator providing the bundle as input parameter.

The iterator is returned to the caller, the first part of the getAllRecords has been executed,

the S-EHR app now can iterate over the results.

● Step 1.2: S-EHR stars iterating over query results, invoking the method next() of ResourceIterator.

○ Step 1.2.1 (executed optionally only if the cache is empty): the LazyIterator invokes the

method next() of its FHIRLazyQueryExecutor, asking for the next bunch of data.

○ Step 1.2.1.1: FHIRLazyQueryExecutor invokes method search() of the class

HealthRecordDAO, requesting the next page of data.

○ Step 1.2.1.1.1: the HealthRecordDAO creates the corresponding EHDSI request and submit

it to the NCP. The obtained results are converted to CDA and then returned to the caller

(LazyIterator);

○ Step 1.2.2: the LazyIterator returns the current instance of Resource from the Bundle

● Step 1.3: the S-EHR app stores the resource in its database.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 48

GetLastRecord

Figure 19 - Sequence diagram of GetLastRecord method executed with EHDSI protocol

● Step 0 (not shown in the sequence diagram): the citizen has performed the authentication and has

created an instance of MR2D (MR2DOverEHDSI) using the method R2FactoryImpl.create().

● Step 1: the citizen asks for the import of his patient summary from the national EHR, and provides

import options needed by the app.

● Step 1.1: the S-EHR app invokes method getLastRecord() on the instance of MR2D previously

created.

○ Step 1.1.1: the MR2DFacade dispatches the request to the specific MR2D provider, an

instance of MR2DOverEHDSI.

○ Step 1.1.1.1: MR2DOverEHDSI creates and configure an instance of HealthRecordDAO to

perform the specific request.

○ Step 1.1.1.2: MR2DOverEHDSI invokes method getLast() of the class HealthRecordDAO,

providing the needed input parameters as an array of Argument.

■ Step 1.1.1.2.1 and Step 1.1.1.2.2: the HealthRecordDAO creates the corresponding

EHDSI request and submit it to the NCP.

■ Step 1.1.1.2.3: the HealthRecordDAO converts the CDA results in FHIR, the

obtained Bundle is returned to the caller.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 49

○ Step 1.1.1.3: MR2DOverFHIR extracts the first item from the bundle and returns it to the

caller.

● Step 1.2: the S-EHR app stores the resource in its database

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 50

4. D2D and R2D Data Model
The data model used by the D2D and R2D libraries is mostly composed by data compliant to FHIR

specifications. Aside from some primitive types, operations of D2D and R2D mainly manage data that

belong to subclasses (FHIR data model supports hierarchy) of org.hl7.fhir.model.Resource, that is the base

class of every data handled by the FHIR API. The FHIR data model represents the common layer between

D2D and R2D protocols, where they both allow exchange of health data represented as FHIR resources. The

following class diagram shows in a simplified schema the FHIR resources used in the exchange of health

data executed within the D2D and R2D protocols. More details regarding an initial version of the Data

Model and the Interoperability Profile that is used in the InteropEHRate project can be found in D2.7 - FHIR

profile for EHR interoperability - V1 [D2.7].

Figure 20 - D2D and R2D Data Model

Although the complete FHIR specifications can be found in [FHIR], the following table contains a short

description (extracted from FHIR specifications) of each class represented in the previous class diagram.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 51

Resource A resource is an entity that:

● represents a medical or administrative data;

● has a known identity (a URL) by which it can be addressed;

● identifies itself as one of the types of resources defined in this

specification;

● contains a set of structured data items as described by the definition of

the resource type;

● has an identified version that changes if the contents of the resource

change;

It is the base class of all kinds of data that can be exchanged using FHIR.

Practitioner FHIR resource that represents a person who is directly or indirectly involved in

the provisioning of healthcare.

Patient FHIR resource that contains demographics and other administrative information

about an individual or animal receiving care or other health-related services.

DiagnosticReport FHIR resource that contains findings and interpretation of diagnostic tests

performed on patients or groups of patients. The report includes clinical context

such as requesting and provider information, and some mix of atomic results,

images, textual and coded interpretations, and formatted representation of

diagnostic reports.

Observation FHIR resource that represents a measurement or simple assertions made about

a patient, device or other subject.

AllergyIntolerance FHIR resource that represents a risk of harmful or undesirable, physiological

response which is unique to an individual and associated with exposure to a

substance.

Medication FHIR resource primarily used for the identification and definition of a

medication for the purposes of prescribing, dispensing, and administering a

medication as well as for making statements about medication use.

MedicationRequest FHIR resource that represents an order or request for both supply of the

medication and the instructions for administration of the medication to a

patient.

Condition FHIR resource that represents a clinical condition, problem, diagnosis, or other

event, situation, issue, or clinical concept that has risen to a level of concern.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 52

Composition FHIR resource that represents a set of healthcare-related information that is

assembled together into a single logical package that provides a single coherent

statement of meaning, establishes its own context and that has clinical

attestation with regard to who is making the statement.

Bundle A container for a collection of resources.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 53

5. CONCLUSIONS AND NEXT STEPS

The objective of this report is to deliver the initial version of the design of the libraries offered by the

InteropEHRate Framework as a reference implementation of the device-to-device (D2D) and the remote-to-

device (R2D) health record exchange protocols. To this end, this document presents a first draft of the

intended content of the libraries and their further functionality purposes. Following this draft, two updates

of this report are planned to be released. The first update is planned to be released on December 2020,

whilst the second update is planned to be released on December 2021, both of them including the relevant

updates, of both the libraries that implement the operations for the communication between the involved

applications, either for the purposes of the D2D or the R2D protocols. In the next version of the design of

libraries for remote and D2D HR exchange, based on the current implementation, the needs as well as the

additional functionalities that will be required, a new version of the libraries’ design will be released for the

intended audience.

InteropEHRate deliverable D4.4: Design of libraries for remote and D2D HR exchange - V1

 54

REFERENCES

● [D2.7] InteropEHRate Consortium, D2.7 - FHIR profile for EHR interoperability - V1,2019.

www.interopehrate.eu/resources

● [D3.9] InteropEHRate Consortium, D3.9 - Design of libraries for HR security and privacy services -

V1,2019. www.interopehrate.eu/resources

● [D4.1] InteropEHRate Consortium, D4.1 - Specification of remote and D2D protocol and APIs for HR

exchange - V1,2019. www.interopehrate.eu/resources

● [HAPI] HAPI FHIR Library, Website: https://hapifhir.io/

● [FHIR] HL7 FHIR specifications, Website: http://hl7.org/fhir/

● [ANDROID BLUETOOTH] Android Bluetooth API, Website:

https://developer.android.com/guide/topics/connectivity/bluetooth

● [BLUECOVE] Bluecove Library, Website: http://www.bluecove.org/

https://hapifhir.io/
http://hl7.org/fhir/
https://developer.android.com/guide/topics/connectivity/bluetooth
http://www.bluecove.org/

